test/crypto: add ECDSA sign/verify cases

This patch adds ECDSA sign and verify test
routine and test vectors.

Signed-off-by: Anoob Joseph <anoobj@marvell.com>
Signed-off-by: Ayuj Verma <ayverma@marvell.com>
Signed-off-by: Sunila Sahu <ssahu@marvell.com>
This commit is contained in:
Ayuj Verma 2020-01-15 18:13:39 +05:30 committed by Akhil Goyal
parent 2e12bd06fe
commit d90e58a783
3 changed files with 734 additions and 1 deletions

View file

@ -18,6 +18,7 @@
#include "test_cryptodev.h"
#include "test_cryptodev_dh_test_vectors.h"
#include "test_cryptodev_dsa_test_vectors.h"
#include "test_cryptodev_ecdsa_test_vectors.h"
#include "test_cryptodev_mod_test_vectors.h"
#include "test_cryptodev_rsa_test_vectors.h"
#include "test_cryptodev_asym_util.h"
@ -1037,14 +1038,16 @@ static inline void print_asym_capa(
case RTE_CRYPTO_ASYM_XFORM_MODEX:
case RTE_CRYPTO_ASYM_XFORM_DH:
case RTE_CRYPTO_ASYM_XFORM_DSA:
printf(" modlen: min %d max %d increment %d\n",
printf(" modlen: min %d max %d increment %d",
capa->modlen.min,
capa->modlen.max,
capa->modlen.increment);
break;
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
default:
break;
}
printf("\n");
}
static int
@ -1892,6 +1895,218 @@ test_dsa(void)
return status;
}
static int
test_ecdsa_sign_verify(enum curve curve_id)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_mempool *sess_mpool = ts_params->session_mpool;
struct rte_mempool *op_mpool = ts_params->op_mpool;
struct crypto_testsuite_ecdsa_params input_params;
struct rte_cryptodev_asym_session *sess = NULL;
uint8_t dev_id = ts_params->valid_devs[0];
struct rte_crypto_op *result_op = NULL;
uint8_t output_buf_r[TEST_DATA_SIZE];
uint8_t output_buf_s[TEST_DATA_SIZE];
struct rte_crypto_asym_xform xform;
struct rte_crypto_asym_op *asym_op;
struct rte_cryptodev_info dev_info;
struct rte_crypto_op *op = NULL;
int status = TEST_SUCCESS, ret;
switch (curve_id) {
case SECP192R1:
input_params = ecdsa_param_secp192r1;
break;
case SECP224R1:
input_params = ecdsa_param_secp224r1;
break;
case SECP256R1:
input_params = ecdsa_param_secp256r1;
break;
case SECP384R1:
input_params = ecdsa_param_secp384r1;
break;
case SECP521R1:
input_params = ecdsa_param_secp521r1;
break;
default:
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Unsupported curve id\n");
status = TEST_FAILED;
goto exit;
}
rte_cryptodev_info_get(dev_id, &dev_info);
sess = rte_cryptodev_asym_session_create(sess_mpool);
if (sess == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Session creation failed\n");
status = TEST_FAILED;
goto exit;
}
/* Setup crypto op data structure */
op = rte_crypto_op_alloc(op_mpool, RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
if (op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Failed to allocate asymmetric crypto "
"operation struct\n");
status = TEST_FAILED;
goto exit;
}
asym_op = op->asym;
/* Setup asym xform */
xform.next = NULL;
xform.xform_type = RTE_CRYPTO_ASYM_XFORM_ECDSA;
xform.ec.curve_id = input_params.curve;
if (rte_cryptodev_asym_session_init(dev_id, sess, &xform,
sess_mpool) < 0) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Unable to config asym session\n");
status = TEST_FAILED;
goto exit;
}
/* Attach asymmetric crypto session to crypto operations */
rte_crypto_op_attach_asym_session(op, sess);
/* Compute sign */
/* Populate op with operational details */
op->asym->ecdsa.op_type = RTE_CRYPTO_ASYM_OP_SIGN;
op->asym->ecdsa.message.data = input_params.digest.data;
op->asym->ecdsa.message.length = input_params.digest.length;
op->asym->ecdsa.k.data = input_params.scalar.data;
op->asym->ecdsa.k.length = input_params.scalar.length;
op->asym->ecdsa.pkey.data = input_params.pkey.data;
op->asym->ecdsa.pkey.length = input_params.pkey.length;
/* Init out buf */
op->asym->ecdsa.r.data = output_buf_r;
op->asym->ecdsa.s.data = output_buf_s;
RTE_LOG(DEBUG, USER1, "Process ASYM operation\n");
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Error sending packet for operation\n");
status = TEST_FAILED;
goto exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Failed to process asym crypto op\n");
status = TEST_FAILED;
goto exit;
}
if (result_op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Failed to process asym crypto op\n");
status = TEST_FAILED;
goto exit;
}
asym_op = result_op->asym;
debug_hexdump(stdout, "r:",
asym_op->ecdsa.r.data, asym_op->ecdsa.r.length);
debug_hexdump(stdout, "s:",
asym_op->ecdsa.s.data, asym_op->ecdsa.s.length);
ret = verify_ecdsa_sign(input_params.sign_r.data,
input_params.sign_s.data, result_op);
if (ret) {
status = TEST_FAILED;
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"ECDSA sign failed.\n");
goto exit;
}
/* Verify sign */
/* Populate op with operational details */
op->asym->ecdsa.op_type = RTE_CRYPTO_ASYM_OP_VERIFY;
op->asym->ecdsa.q.x.data = input_params.pubkey_qx.data;
op->asym->ecdsa.q.x.length = input_params.pubkey_qx.length;
op->asym->ecdsa.q.y.data = input_params.pubkey_qy.data;
op->asym->ecdsa.q.y.length = input_params.pubkey_qx.length;
op->asym->ecdsa.r.data = asym_op->ecdsa.r.data;
op->asym->ecdsa.r.length = asym_op->ecdsa.r.length;
op->asym->ecdsa.s.data = asym_op->ecdsa.s.data;
op->asym->ecdsa.s.length = asym_op->ecdsa.s.length;
/* Enqueue sign result for verify */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
status = TEST_FAILED;
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"Error sending packet for operation\n");
goto exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
status = TEST_FAILED;
goto exit;
}
if (result_op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
status = TEST_FAILED;
RTE_LOG(ERR, USER1,
"line %u FAILED: %s", __LINE__,
"ECDSA verify failed.\n");
goto exit;
}
exit:
if (sess != NULL) {
rte_cryptodev_asym_session_clear(dev_id, sess);
rte_cryptodev_asym_session_free(sess);
}
if (op != NULL)
rte_crypto_op_free(op);
return status;
};
static int
test_ecdsa_sign_verify_all_curve(void)
{
int status, overall_status = TEST_SUCCESS;
enum curve curve_id;
int test_index = 0;
const char *msg;
for (curve_id = SECP192R1; curve_id < END_OF_CURVE_LIST; curve_id++) {
status = test_ecdsa_sign_verify(curve_id);
if (status == TEST_SUCCESS) {
msg = "succeeded";
} else {
msg = "failed";
overall_status = status;
}
printf(" %u) TestCase Sign/Veriy Curve %s %s\n",
test_index ++, curve[curve_id], msg);
}
return overall_status;
}
static struct unit_test_suite cryptodev_openssl_asym_testsuite = {
.suite_name = "Crypto Device OPENSSL ASYM Unit Test Suite",
@ -1931,6 +2146,8 @@ static struct unit_test_suite cryptodev_octeontx_asym_testsuite = {
TEST_CASE_ST(ut_setup, ut_teardown, test_rsa_enc_dec_crt),
TEST_CASE_ST(ut_setup, ut_teardown, test_rsa_sign_verify_crt),
TEST_CASE_ST(ut_setup, ut_teardown, test_mod_exp),
TEST_CASE_ST(ut_setup, ut_teardown,
test_ecdsa_sign_verify_all_curve),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};

View file

@ -35,4 +35,15 @@ static inline int verify_modexp(uint8_t *mod_exp,
return 0;
}
static inline int verify_ecdsa_sign(uint8_t *sign_r,
uint8_t *sign_s, struct rte_crypto_op *result_op)
{
if (memcmp(sign_r, result_op->asym->ecdsa.r.data,
result_op->asym->ecdsa.r.length) ||
memcmp(sign_s, result_op->asym->ecdsa.s.data,
result_op->asym->ecdsa.s.length))
return -1;
return 0;
}
#endif /* TEST_CRYPTODEV_ASYM_TEST_UTIL_H__ */

View file

@ -0,0 +1,505 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2020 Marvell International Ltd.
*/
#ifndef __TEST_CRYPTODEV_ECDSA_TEST_VECTORS_H__
#define __TEST_CRYPTODEV_ECDSA_TEST_VECTORS_H__
#include "rte_crypto_asym.h"
/* EC curve id */
enum curve {
SECP192R1,
SECP224R1,
SECP256R1,
SECP384R1,
SECP521R1,
END_OF_CURVE_LIST
};
const char *curve[] = {"SECP192R1",
"SECP224R1",
"SECP256R1",
"SECP384R1",
"SECP521R1"};
struct crypto_testsuite_ecdsa_params {
rte_crypto_param pubkey_qx;
rte_crypto_param pubkey_qy;
rte_crypto_param scalar;
rte_crypto_param digest;
rte_crypto_param sign_r;
rte_crypto_param sign_s;
rte_crypto_param pkey;
int curve;
};
/*
* Test vector reference:
* https://csrc.nist.gov/CSRC/media/Projects/
* Cryptographic-Algorithm-Validation-Program/
* documents/components/186-3ecdsasiggencomponenttestvectors.zip
*/
/* SECP192R1 (P-192 NIST) test vector */
static uint8_t digest_secp192r1[] = {
0x5a, 0xe8, 0x31, 0x7d, 0x34, 0xd1, 0xe5, 0x95,
0xe3, 0xfa, 0x72, 0x47, 0xdb, 0x80, 0xc0, 0xaf,
0x43, 0x20, 0xcc, 0xe1, 0x11, 0x6d, 0xe1, 0x87,
0xf8, 0xf7, 0xe2, 0xe0, 0x99, 0xc0, 0xd8, 0xd0
};
static uint8_t pkey_secp192r1[] = {
0x24, 0xed, 0xd2, 0x2f, 0x7d, 0xdd, 0x6f, 0xa5,
0xbc, 0x61, 0xfc, 0x06, 0x53, 0x47, 0x9a, 0xa4,
0x08, 0x09, 0xef, 0x86, 0x5c, 0xf2, 0x7a, 0x47
};
static uint8_t scalar_secp192r1[] = {
0xa5, 0xc8, 0x17, 0xa2, 0x36, 0xa5, 0xf7, 0xfa,
0xa3, 0x29, 0xb8, 0xec, 0xc3, 0xc5, 0x96, 0x68,
0x7c, 0x71, 0xaa, 0xaf, 0x86, 0xc7, 0x70, 0x3e
};
static uint8_t pubkey_qx_secp192r1[] = {
0x9b, 0xf1, 0x2d, 0x71, 0x74, 0xb7, 0x70, 0x8a,
0x07, 0x6a, 0x38, 0xbc, 0x80, 0xaa, 0x28, 0x66,
0x2f, 0x25, 0x1e, 0x2e, 0xd8, 0xd4, 0x14, 0xdc
};
static uint8_t pubkey_qy_secp192r1[] = {
0x48, 0x54, 0xc8, 0xd0, 0x7d, 0xfc, 0x08, 0x82,
0x4e, 0x9e, 0x47, 0x1c, 0xa2, 0xfe, 0xdc, 0xfc,
0xff, 0x3d, 0xdc, 0xb0, 0x11, 0x57, 0x34, 0x98
};
static uint8_t sign_secp192r1_r[] = {
0x35, 0x4a, 0xba, 0xec, 0xf4, 0x36, 0x1f, 0xea,
0x90, 0xc2, 0x9b, 0x91, 0x99, 0x88, 0x2e, 0xdf,
0x85, 0x73, 0xe6, 0x86, 0xa8, 0x13, 0xef, 0xf8
};
static uint8_t sign_secp192r1_s[] = {
0x80, 0xf5, 0x00, 0x00, 0xac, 0x86, 0x11, 0x1c,
0x9b, 0x30, 0x47, 0x38, 0x5a, 0x15, 0xd7, 0x8e,
0x63, 0x2c, 0x58, 0xb7, 0x94, 0x9e, 0x82, 0xc1
};
/** ECDSA SECP192R1 elliptic curve param */
struct crypto_testsuite_ecdsa_params ecdsa_param_secp192r1 = {
.pubkey_qx = {
.data = pubkey_qx_secp192r1,
.length = sizeof(pubkey_qx_secp192r1),
},
.pubkey_qy = {
.data = pubkey_qy_secp192r1,
.length = sizeof(pubkey_qy_secp192r1),
},
.scalar = {
.data = scalar_secp192r1,
.length = sizeof(scalar_secp192r1),
},
.digest = {
.data = digest_secp192r1,
.length = sizeof(digest_secp192r1),
},
.sign_r = {
.data = sign_secp192r1_r,
.length = sizeof(sign_secp192r1_r),
},
.sign_s = {
.data = sign_secp192r1_s,
.length = sizeof(sign_secp192r1_s),
},
.pkey = {
.data = pkey_secp192r1,
.length = sizeof(pkey_secp192r1),
},
.curve = RTE_CRYPTO_EC_GROUP_SECP192R1
};
/* SECP224R1 (P-224 NIST) test vectors */
static uint8_t digest_secp224r1[] = {
0x00, 0xc6, 0xfc, 0x53, 0xc1, 0x98, 0x6d, 0x19,
0xa8, 0xa8, 0xb5, 0x80, 0xee, 0x55, 0x3d, 0xc1,
0x24, 0x07, 0x45, 0xd7, 0x60, 0x64, 0x7d, 0x1c,
0x0a, 0xdf, 0x44, 0x2c, 0x13, 0x3c, 0x7f, 0x56
};
static uint8_t pkey_secp224r1[] = {
0x88, 0x8f, 0xc9, 0x92, 0x89, 0x3b, 0xdd, 0x8a,
0xa0, 0x2c, 0x80, 0x76, 0x88, 0x32, 0x60, 0x5d,
0x02, 0x0b, 0x81, 0xae, 0x0b, 0x25, 0x47, 0x41,
0x54, 0xec, 0x89, 0xaa
};
static uint8_t scalar_secp224r1[] = {
0x06, 0xf7, 0xa5, 0x60, 0x07, 0x82, 0x54, 0x33,
0xc4, 0xc6, 0x11, 0x53, 0xdf, 0x1a, 0x13, 0x5e,
0xee, 0x2f, 0x38, 0xec, 0x68, 0x7b, 0x49, 0x2e,
0xd4, 0x0d, 0x9c, 0x90
};
static uint8_t pubkey_qx_secp224r1[] = {
0x4c, 0x74, 0x1e, 0x4d, 0x20, 0x10, 0x36, 0x70,
0xb7, 0x16, 0x1a, 0xe7, 0x22, 0x71, 0x08, 0x21,
0x55, 0x83, 0x84, 0x18, 0x08, 0x43, 0x35, 0x33,
0x8a, 0xc3, 0x8f, 0xa4
};
static uint8_t pubkey_qy_secp224r1[] = {
0xdb, 0x79, 0x19, 0x15, 0x1a, 0xc2, 0x85, 0x87,
0xb7, 0x2b, 0xad, 0x7a, 0xb1, 0x80, 0xec, 0x8e,
0x95, 0xab, 0x9e, 0x2c, 0x8d, 0x81, 0xd9, 0xb9,
0xd7, 0xe2, 0xe3, 0x83
};
static uint8_t sign_secp224r1_r[] = {
0x09, 0x09, 0xc9, 0xb9, 0xca, 0xe8, 0xd2, 0x79,
0x0e, 0x29, 0xdb, 0x6a, 0xfd, 0xb4, 0x5c, 0x04,
0xf5, 0xb0, 0x72, 0xc4, 0xc2, 0x04, 0x10, 0xc7,
0xdc, 0x9b, 0x67, 0x72
};
static uint8_t sign_secp224r1_s[] = {
0x29, 0x8f, 0x4f, 0xca, 0xe1, 0xfe, 0x27, 0x1d,
0xa1, 0xe0, 0x34, 0x5d, 0x11, 0xd0, 0x7a, 0x1f,
0xca, 0x43, 0xf5, 0x8a, 0xf4, 0xc1, 0x13, 0xb9,
0x09, 0xee, 0xde, 0xa0
};
/** ECDSA SECP224R1 elliptic curve param */
struct crypto_testsuite_ecdsa_params ecdsa_param_secp224r1 = {
.pubkey_qx = {
.data = pubkey_qx_secp224r1,
.length = sizeof(pubkey_qx_secp224r1),
},
.pubkey_qy = {
.data = pubkey_qy_secp224r1,
.length = sizeof(pubkey_qy_secp224r1),
},
.scalar = {
.data = scalar_secp224r1,
.length = sizeof(scalar_secp224r1),
},
.digest = {
.data = digest_secp224r1,
.length = sizeof(digest_secp224r1),
},
.sign_r = {
.data = sign_secp224r1_r,
.length = sizeof(sign_secp224r1_r),
},
.sign_s = {
.data = sign_secp224r1_s,
.length = sizeof(sign_secp224r1_s),
},
.pkey = {
.data = pkey_secp224r1,
.length = sizeof(pkey_secp224r1),
},
.curve = RTE_CRYPTO_EC_GROUP_SECP224R1
};
/* SECP256R1 (P-256 NIST) test vectors */
static uint8_t digest_secp256r1[] = {
0x44, 0xac, 0xf6, 0xb7, 0xe3, 0x6c, 0x13, 0x42,
0xc2, 0xc5, 0x89, 0x72, 0x04, 0xfe, 0x09, 0x50,
0x4e, 0x1e, 0x2e, 0xfb, 0x1a, 0x90, 0x03, 0x77,
0xdb, 0xc4, 0xe7, 0xa6, 0xa1, 0x33, 0xec, 0x56
};
static uint8_t pkey_secp256r1[] = {
0x51, 0x9b, 0x42, 0x3d, 0x71, 0x5f, 0x8b, 0x58,
0x1f, 0x4f, 0xa8, 0xee, 0x59, 0xf4, 0x77, 0x1a,
0x5b, 0x44, 0xc8, 0x13, 0x0b, 0x4e, 0x3e, 0xac,
0xca, 0x54, 0xa5, 0x6d, 0xda, 0x72, 0xb4, 0x64
};
static uint8_t scalar_secp256r1[] = {
0x94, 0xa1, 0xbb, 0xb1, 0x4b, 0x90, 0x6a, 0x61,
0xa2, 0x80, 0xf2, 0x45, 0xf9, 0xe9, 0x3c, 0x7f,
0x3b, 0x4a, 0x62, 0x47, 0x82, 0x4f, 0x5d, 0x33,
0xb9, 0x67, 0x07, 0x87, 0x64, 0x2a, 0x68, 0xde
};
static uint8_t pubkey_qx_secp256r1[] = {
0x1c, 0xcb, 0xe9, 0x1c, 0x07, 0x5f, 0xc7, 0xf4,
0xf0, 0x33, 0xbf, 0xa2, 0x48, 0xdb, 0x8f, 0xcc,
0xd3, 0x56, 0x5d, 0xe9, 0x4b, 0xbf, 0xb1, 0x2f,
0x3c, 0x59, 0xff, 0x46, 0xc2, 0x71, 0xbf, 0x83
};
static uint8_t pubkey_qy_secp256r1[] = {
0xce, 0x40, 0x14, 0xc6, 0x88, 0x11, 0xf9, 0xa2,
0x1a, 0x1f, 0xdb, 0x2c, 0x0e, 0x61, 0x13, 0xe0,
0x6d, 0xb7, 0xca, 0x93, 0xb7, 0x40, 0x4e, 0x78,
0xdc, 0x7c, 0xcd, 0x5c, 0xa8, 0x9a, 0x4c, 0xa9
};
static uint8_t sign_secp256r1_r[] = {
0xf3, 0xac, 0x80, 0x61, 0xb5, 0x14, 0x79, 0x5b,
0x88, 0x43, 0xe3, 0xd6, 0x62, 0x95, 0x27, 0xed,
0x2a, 0xfd, 0x6b, 0x1f, 0x6a, 0x55, 0x5a, 0x7a,
0xca, 0xbb, 0x5e, 0x6f, 0x79, 0xc8, 0xc2, 0xac
};
static uint8_t sign_secp256r1_s[] = {
0x8b, 0xf7, 0x78, 0x19, 0xca, 0x05, 0xa6, 0xb2,
0x78, 0x6c, 0x76, 0x26, 0x2b, 0xf7, 0x37, 0x1c,
0xef, 0x97, 0xb2, 0x18, 0xe9, 0x6f, 0x17, 0x5a,
0x3c, 0xcd, 0xda, 0x2a, 0xcc, 0x05, 0x89, 0x03
};
/** ECDSA SECP256R1 elliptic curve param */
struct crypto_testsuite_ecdsa_params ecdsa_param_secp256r1 = {
.pubkey_qx = {
.data = pubkey_qx_secp256r1,
.length = sizeof(pubkey_qx_secp256r1),
},
.pubkey_qy = {
.data = pubkey_qy_secp256r1,
.length = sizeof(pubkey_qy_secp256r1),
},
.scalar = {
.data = scalar_secp256r1,
.length = sizeof(scalar_secp256r1),
},
.digest = {
.data = digest_secp256r1,
.length = sizeof(digest_secp256r1),
},
.sign_r = {
.data = sign_secp256r1_r,
.length = sizeof(sign_secp256r1_r),
},
.sign_s = {
.data = sign_secp256r1_s,
.length = sizeof(sign_secp256r1_s),
},
.pkey = {
.data = pkey_secp256r1,
.length = sizeof(pkey_secp256r1),
},
.curve = RTE_CRYPTO_EC_GROUP_SECP256R1
};
/* SECP384R1 (P-384 NIST) test vectors */
static uint8_t digest_secp384r1[] = {
0xbb, 0xbd, 0x0a, 0x5f, 0x64, 0x5d, 0x3f, 0xda,
0x10, 0xe2, 0x88, 0xd1, 0x72, 0xb2, 0x99, 0x45,
0x5f, 0x9d, 0xff, 0x00, 0xe0, 0xfb, 0xc2, 0x83,
0x3e, 0x18, 0xcd, 0x01, 0x7d, 0x7f, 0x3e, 0xd1
};
static uint8_t pkey_secp384r1[] = {
0xc6, 0x02, 0xbc, 0x74, 0xa3, 0x45, 0x92, 0xc3,
0x11, 0xa6, 0x56, 0x96, 0x61, 0xe0, 0x83, 0x2c,
0x84, 0xf7, 0x20, 0x72, 0x74, 0x67, 0x6c, 0xc4,
0x2a, 0x89, 0xf0, 0x58, 0x16, 0x26, 0x30, 0x18,
0x4b, 0x52, 0xf0, 0xd9, 0x9b, 0x85, 0x5a, 0x77,
0x83, 0xc9, 0x87, 0x47, 0x6d, 0x7f, 0x9e, 0x6b
};
static uint8_t scalar_secp384r1[] = {
0xc1, 0x0b, 0x5c, 0x25, 0xc4, 0x68, 0x3d, 0x0b,
0x78, 0x27, 0xd0, 0xd8, 0x86, 0x97, 0xcd, 0xc0,
0x93, 0x24, 0x96, 0xb5, 0x29, 0x9b, 0x79, 0x8c,
0x0d, 0xd1, 0xe7, 0xaf, 0x6c, 0xc7, 0x57, 0xcc,
0xb3, 0x0f, 0xcd, 0x3d, 0x36, 0xea, 0xd4, 0xa8,
0x04, 0x87, 0x7e, 0x24, 0xf3, 0xa3, 0x24, 0x43
};
static uint8_t pubkey_qx_secp384r1[] = {
0x04, 0x00, 0x19, 0x3b, 0x21, 0xf0, 0x7c, 0xd0,
0x59, 0x82, 0x6e, 0x94, 0x53, 0xd3, 0xe9, 0x6d,
0xd1, 0x45, 0x04, 0x1c, 0x97, 0xd4, 0x9f, 0xf6,
0xb7, 0x04, 0x7f, 0x86, 0xbb, 0x0b, 0x04, 0x39,
0xe9, 0x09, 0x27, 0x4c, 0xb9, 0xc2, 0x82, 0xbf,
0xab, 0x88, 0x67, 0x4c, 0x07, 0x65, 0xbc, 0x75
};
static uint8_t pubkey_qy_secp384r1[] = {
0xf7, 0x0d, 0x89, 0xc5, 0x2a, 0xcb, 0xc7, 0x04,
0x68, 0xd2, 0xc5, 0xae, 0x75, 0xc7, 0x6d, 0x7f,
0x69, 0xb7, 0x6a, 0xf6, 0x2d, 0xcf, 0x95, 0xe9,
0x9e, 0xba, 0x5d, 0xd1, 0x1a, 0xdf, 0x8f, 0x42,
0xec, 0x9a, 0x42, 0x5b, 0x0c, 0x5e, 0xc9, 0x8e,
0x2f, 0x23, 0x4a, 0x92, 0x6b, 0x82, 0xa1, 0x47
};
static uint8_t sign_secp384r1_r[] = {
0xb1, 0x1d, 0xb0, 0x0c, 0xda, 0xf5, 0x32, 0x86,
0xd4, 0x48, 0x3f, 0x38, 0xcd, 0x02, 0x78, 0x59,
0x48, 0x47, 0x7e, 0xd7, 0xeb, 0xc2, 0xad, 0x60,
0x90, 0x54, 0x55, 0x1d, 0xa0, 0xab, 0x03, 0x59,
0x97, 0x8c, 0x61, 0x85, 0x17, 0x88, 0xaa, 0x2e,
0xc3, 0x26, 0x79, 0x46, 0xd4, 0x40, 0xe8, 0x78
};
static uint8_t sign_secp384r1_s[] = {
0x16, 0x00, 0x78, 0x73, 0xc5, 0xb0, 0x60, 0x4c,
0xe6, 0x81, 0x12, 0xa8, 0xfe, 0xe9, 0x73, 0xe8,
0xe2, 0xb6, 0xe3, 0x31, 0x9c, 0x68, 0x3a, 0x76,
0x2f, 0xf5, 0x06, 0x5a, 0x07, 0x65, 0x12, 0xd7,
0xc9, 0x8b, 0x27, 0xe7, 0x4b, 0x78, 0x87, 0x67,
0x10, 0x48, 0xac, 0x02, 0x7d, 0xf8, 0xcb, 0xf2
};
/** ECDSA SECP384R1 elliptic curve param */
struct crypto_testsuite_ecdsa_params ecdsa_param_secp384r1 = {
.pubkey_qx = {
.data = pubkey_qx_secp384r1,
.length = sizeof(pubkey_qx_secp384r1),
},
.pubkey_qy = {
.data = pubkey_qy_secp384r1,
.length = sizeof(pubkey_qy_secp384r1),
},
.scalar = {
.data = scalar_secp384r1,
.length = sizeof(scalar_secp384r1),
},
.digest = {
.data = digest_secp384r1,
.length = sizeof(digest_secp384r1),
},
.sign_r = {
.data = sign_secp384r1_r,
.length = sizeof(sign_secp384r1_r),
},
.sign_s = {
.data = sign_secp384r1_s,
.length = sizeof(sign_secp384r1_s),
},
.pkey = {
.data = pkey_secp384r1,
.length = sizeof(pkey_secp384r1),
},
.curve = RTE_CRYPTO_EC_GROUP_SECP384R1
};
/* SECP521R1 (P-521 NIST) test vectors */
static uint8_t digest_secp521r1[] = {
0x53, 0xe6, 0x53, 0x7c, 0xb6, 0xea, 0x68, 0xae,
0x47, 0xa8, 0x16, 0x11, 0xc2, 0x27, 0x56, 0xd7,
0x70, 0xd7, 0xa3, 0x7e, 0x33, 0x6c, 0x3a, 0xf0,
0xb0, 0x81, 0x4b, 0x04, 0xfa, 0x39, 0x43, 0x4b
};
static uint8_t pkey_secp521r1[] = {
0x01, 0xe8, 0xc0, 0x59, 0x96, 0xb8, 0x5e, 0x6f,
0x3f, 0x87, 0x57, 0x12, 0xa0, 0x9c, 0x1b, 0x40,
0x67, 0x2b, 0x5e, 0x7a, 0x78, 0xd5, 0x85, 0x2d,
0xe0, 0x15, 0x85, 0xc5, 0xfb, 0x99, 0x0b, 0xf3,
0x81, 0x2c, 0x32, 0x45, 0x53, 0x4a, 0x71, 0x43,
0x89, 0xae, 0x90, 0x14, 0xd6, 0x77, 0xa4, 0x49,
0xef, 0xd6, 0x58, 0x25, 0x4e, 0x61, 0x0d, 0xa8,
0xe6, 0xca, 0xd3, 0x34, 0x14, 0xb9, 0xd3, 0x3e,
0x0d, 0x7a
};
static uint8_t scalar_secp521r1[] = {
0x00, 0xdc, 0x8d, 0xaa, 0xac, 0xdd, 0xb8, 0xfd,
0x2f, 0xf5, 0xc3, 0x4a, 0x5c, 0xe1, 0x83, 0xa4,
0x22, 0x61, 0xad, 0x3c, 0x64, 0xdb, 0xfc, 0x09,
0x5e, 0x58, 0x92, 0x43, 0x64, 0xdc, 0x47, 0xea,
0x1c, 0x05, 0xe2, 0x59, 0x9a, 0xae, 0x91, 0x7c,
0x2c, 0x95, 0xf4, 0x7d, 0x6b, 0xb3, 0x7d, 0xa0,
0x08, 0xaf, 0x9f, 0x55, 0x73, 0x0d, 0xdb, 0xe4,
0xd8, 0xde, 0xd2, 0x4f, 0x9e, 0x8d, 0xaa, 0x46,
0xdb, 0x6a
};
static uint8_t pubkey_qx_secp521r1[] = {
0x00, 0x7d, 0x04, 0x2c, 0xa1, 0x94, 0x08, 0x52,
0x4e, 0x68, 0xb9, 0x81, 0xf1, 0x41, 0x93, 0x51,
0xe3, 0xb8, 0x47, 0x36, 0xc7, 0x7f, 0xe5, 0x8f,
0xee, 0x7d, 0x11, 0x31, 0x7d, 0xf2, 0xe8, 0x50,
0xd9, 0x60, 0xc7, 0xdd, 0x10, 0xd1, 0x0b, 0xa7,
0x14, 0xc8, 0xa6, 0x09, 0xd1, 0x63, 0x50, 0x2b,
0x79, 0xd6, 0x82, 0xe8, 0xbb, 0xec, 0xd4, 0xf5,
0x25, 0x91, 0xd2, 0x74, 0x85, 0x33, 0xe4, 0x5a,
0x86, 0x7a
};
static uint8_t pubkey_qy_secp521r1[] = {
0x01, 0x97, 0xac, 0x64, 0x16, 0x11, 0x1c, 0xcf,
0x98, 0x7d, 0x29, 0x04, 0x59, 0xeb, 0xc8, 0xad,
0x9e, 0xc5, 0x6e, 0x49, 0x05, 0x9c, 0x99, 0x21,
0x55, 0x53, 0x9a, 0x36, 0xa6, 0x26, 0x63, 0x1f,
0x4a, 0x2d, 0x89, 0x16, 0x4b, 0x98, 0x51, 0x54,
0xf2, 0xdd, 0xdc, 0x02, 0x81, 0xee, 0x5b, 0x51,
0x78, 0x27, 0x1f, 0x3a, 0x76, 0xa0, 0x91, 0x4c,
0x3f, 0xcd, 0x1f, 0x97, 0xbe, 0x8e, 0x83, 0x76,
0xef, 0xb3
};
static uint8_t sign_secp521r1_r[] = {
0x00, 0x9d, 0xd1, 0xf2, 0xa7, 0x16, 0x84, 0x3e,
0xed, 0xec, 0x7a, 0x66, 0x45, 0xac, 0x83, 0x4d,
0x43, 0x36, 0xe7, 0xb1, 0x8e, 0x35, 0x70, 0x1f,
0x06, 0xca, 0xe9, 0xd6, 0xb2, 0x90, 0xd4, 0x14,
0x91, 0x42, 0x47, 0x35, 0xf3, 0xb5, 0x7e, 0x82,
0x9a, 0xd5, 0xde, 0x05, 0x5e, 0xae, 0xef, 0x17,
0x78, 0xf0, 0x51, 0xc1, 0xee, 0x15, 0x2b, 0xf2,
0x13, 0x1a, 0x08, 0x1e, 0x53, 0xdf, 0x2a, 0x56,
0x7a, 0x8a
};
static uint8_t sign_secp521r1_s[] = {
0x00, 0x21, 0x48, 0xe8, 0x42, 0x8d, 0x70, 0xa7,
0x2b, 0xc9, 0xfa, 0x98, 0x6c, 0x38, 0xc2, 0xc9,
0x7d, 0xed, 0xa0, 0x42, 0x0f, 0x22, 0x2f, 0x9d,
0xc9, 0x9d, 0x32, 0xc0, 0xac, 0xba, 0x69, 0x9d,
0xc7, 0xba, 0x0a, 0x2b, 0x79, 0xce, 0x59, 0x99,
0xff, 0x61, 0xbd, 0x0b, 0x23, 0x3c, 0x74, 0x4a,
0x89, 0x3b, 0xc1, 0x05, 0xbc, 0xa5, 0xc2, 0x35,
0x42, 0x3e, 0x53, 0x16, 0x12, 0xda, 0x65, 0xd7,
0x2e, 0x62
};
/** ECDSA SECP521R1 elliptic curve param */
struct crypto_testsuite_ecdsa_params ecdsa_param_secp521r1 = {
.pubkey_qx = {
.data = pubkey_qx_secp521r1,
.length = sizeof(pubkey_qx_secp521r1),
},
.pubkey_qy = {
.data = pubkey_qy_secp521r1,
.length = sizeof(pubkey_qy_secp521r1),
},
.scalar = {
.data = scalar_secp521r1,
.length = sizeof(scalar_secp521r1),
},
.digest = {
.data = digest_secp521r1,
.length = sizeof(digest_secp521r1),
},
.sign_r = {
.data = sign_secp521r1_r,
.length = sizeof(sign_secp521r1_r),
},
.sign_s = {
.data = sign_secp521r1_s,
.length = sizeof(sign_secp521r1_s),
},
.pkey = {
.data = pkey_secp521r1,
.length = sizeof(pkey_secp521r1),
},
.curve = RTE_CRYPTO_EC_GROUP_SECP521R1
};
#endif /* __TEST_CRYPTODEV_ECDSA_TEST_VECTORS_H__ */