dpdk-fm10k/app/test/test_graph_perf.c
Pavan Nikhilesh 2e90885566 test/graph: fix memory leaks in performance tests
Fix memory leaks reported by Coverity.

Fixes: 61d77071ab ("test/graph: add performance tests")

Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2020-05-15 11:00:55 +02:00

1064 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2020 Marvell International Ltd.
*/
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_errno.h>
#include <rte_graph.h>
#include <rte_graph_worker.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include "test.h"
#define TEST_GRAPH_PERF_MZ "graph_perf_data"
#define TEST_GRAPH_SRC_NAME "test_graph_perf_source"
#define TEST_GRAPH_SRC_BRST_ONE_NAME "test_graph_perf_source_one"
#define TEST_GRAPH_WRK_NAME "test_graph_perf_worker"
#define TEST_GRAPH_SNK_NAME "test_graph_perf_sink"
#define SOURCES(map) RTE_DIM(map)
#define STAGES(map) RTE_DIM(map)
#define NODES_PER_STAGE(map) RTE_DIM(map[0])
#define SINKS(map) RTE_DIM(map[0])
#define MAX_EDGES_PER_NODE 7
struct test_node_data {
uint8_t node_id;
uint8_t is_sink;
uint8_t next_nodes[MAX_EDGES_PER_NODE];
uint8_t next_percentage[MAX_EDGES_PER_NODE];
};
struct test_graph_perf {
uint16_t nb_nodes;
rte_graph_t graph_id;
struct test_node_data *node_data;
};
struct graph_lcore_data {
uint8_t done;
rte_graph_t graph_id;
};
static struct test_node_data *
graph_get_node_data(struct test_graph_perf *graph_data, rte_node_t id)
{
struct test_node_data *node_data = NULL;
int i;
for (i = 0; i < graph_data->nb_nodes; i++)
if (graph_data->node_data[i].node_id == id) {
node_data = &graph_data->node_data[i];
break;
}
return node_data;
}
static int
test_node_ctx_init(const struct rte_graph *graph, struct rte_node *node)
{
struct test_graph_perf *graph_data;
struct test_node_data *node_data;
const struct rte_memzone *mz;
rte_node_t nid = node->id;
rte_edge_t edge = 0;
int i;
RTE_SET_USED(graph);
mz = rte_memzone_lookup(TEST_GRAPH_PERF_MZ);
if (mz == NULL)
return -ENOMEM;
graph_data = mz->addr;
node_data = graph_get_node_data(graph_data, nid);
node->ctx[0] = node->nb_edges;
for (i = 0; i < node->nb_edges && !node_data->is_sink; i++, edge++) {
node->ctx[i + 1] = edge;
node->ctx[i + 9] = node_data->next_percentage[i];
}
return 0;
}
/* Source node function */
static uint16_t
test_perf_node_worker_source(struct rte_graph *graph, struct rte_node *node,
void **objs, uint16_t nb_objs)
{
uint16_t count;
int i;
RTE_SET_USED(objs);
RTE_SET_USED(nb_objs);
/* Create a proportional stream for every next */
for (i = 0; i < node->ctx[0]; i++) {
count = (node->ctx[i + 9] * RTE_GRAPH_BURST_SIZE) / 100;
rte_node_next_stream_get(graph, node, node->ctx[i + 1], count);
rte_node_next_stream_put(graph, node, node->ctx[i + 1], count);
}
return RTE_GRAPH_BURST_SIZE;
}
static struct rte_node_register test_graph_perf_source = {
.name = TEST_GRAPH_SRC_NAME,
.process = test_perf_node_worker_source,
.flags = RTE_NODE_SOURCE_F,
.init = test_node_ctx_init,
};
RTE_NODE_REGISTER(test_graph_perf_source);
static uint16_t
test_perf_node_worker_source_burst_one(struct rte_graph *graph,
struct rte_node *node, void **objs,
uint16_t nb_objs)
{
uint16_t count;
int i;
RTE_SET_USED(objs);
RTE_SET_USED(nb_objs);
/* Create a proportional stream for every next */
for (i = 0; i < node->ctx[0]; i++) {
count = (node->ctx[i + 9]) / 100;
rte_node_next_stream_get(graph, node, node->ctx[i + 1], count);
rte_node_next_stream_put(graph, node, node->ctx[i + 1], count);
}
return 1;
}
static struct rte_node_register test_graph_perf_source_burst_one = {
.name = TEST_GRAPH_SRC_BRST_ONE_NAME,
.process = test_perf_node_worker_source_burst_one,
.flags = RTE_NODE_SOURCE_F,
.init = test_node_ctx_init,
};
RTE_NODE_REGISTER(test_graph_perf_source_burst_one);
/* Worker node function */
static uint16_t
test_perf_node_worker(struct rte_graph *graph, struct rte_node *node,
void **objs, uint16_t nb_objs)
{
uint16_t next = 0;
uint16_t enq = 0;
uint16_t count;
int i;
/* Move stream for single next node */
if (node->ctx[0] == 1) {
rte_node_next_stream_move(graph, node, node->ctx[1]);
return nb_objs;
}
/* Enqueue objects to next nodes proportionally */
for (i = 0; i < node->ctx[0]; i++) {
next = node->ctx[i + 1];
count = (node->ctx[i + 9] * nb_objs) / 100;
enq += count;
while (count) {
switch (count & (4 - 1)) {
case 0:
rte_node_enqueue_x4(graph, node, next, objs[0],
objs[1], objs[2], objs[3]);
objs += 4;
count -= 4;
break;
case 1:
rte_node_enqueue_x1(graph, node, next, objs[0]);
objs += 1;
count -= 1;
break;
case 2:
rte_node_enqueue_x2(graph, node, next, objs[0],
objs[1]);
objs += 2;
count -= 2;
break;
case 3:
rte_node_enqueue_x2(graph, node, next, objs[0],
objs[1]);
rte_node_enqueue_x1(graph, node, next, objs[0]);
objs += 3;
count -= 3;
break;
}
}
}
if (enq != nb_objs)
rte_node_enqueue(graph, node, next, objs, nb_objs - enq);
return nb_objs;
}
static struct rte_node_register test_graph_perf_worker = {
.name = TEST_GRAPH_WRK_NAME,
.process = test_perf_node_worker,
.init = test_node_ctx_init,
};
RTE_NODE_REGISTER(test_graph_perf_worker);
/* Last node in graph a.k.a sink node */
static uint16_t
test_perf_node_sink(struct rte_graph *graph, struct rte_node *node, void **objs,
uint16_t nb_objs)
{
RTE_SET_USED(graph);
RTE_SET_USED(node);
RTE_SET_USED(objs);
RTE_SET_USED(nb_objs);
return nb_objs;
}
static struct rte_node_register test_graph_perf_sink = {
.name = TEST_GRAPH_SNK_NAME,
.process = test_perf_node_sink,
.init = test_node_ctx_init,
};
RTE_NODE_REGISTER(test_graph_perf_sink);
static int
graph_perf_setup(void)
{
if (rte_lcore_count() < 2) {
printf("Test requires at least 2 lcores\n");
return TEST_SKIPPED;
}
return 0;
}
static void
graph_perf_teardown(void)
{
}
static inline rte_node_t
graph_node_get(const char *pname, char *nname)
{
rte_node_t pnode_id = rte_node_from_name(pname);
char lookup_name[RTE_NODE_NAMESIZE];
rte_node_t node_id;
snprintf(lookup_name, RTE_NODE_NAMESIZE, "%s-%s", pname, nname);
node_id = rte_node_from_name(lookup_name);
if (node_id != RTE_NODE_ID_INVALID) {
if (rte_node_edge_count(node_id))
rte_node_edge_shrink(node_id, 0);
return node_id;
}
return rte_node_clone(pnode_id, nname);
}
static uint16_t
graph_node_count_edges(uint32_t stage, uint16_t node, uint16_t nodes_per_stage,
uint8_t edge_map[][nodes_per_stage][nodes_per_stage],
char *ename[], struct test_node_data *node_data,
rte_node_t **node_map)
{
uint8_t total_percent = 0;
uint16_t edges = 0;
int i;
for (i = 0; i < nodes_per_stage && edges < MAX_EDGES_PER_NODE; i++) {
if (edge_map[stage + 1][i][node]) {
ename[edges] = malloc(sizeof(char) * RTE_NODE_NAMESIZE);
snprintf(ename[edges], RTE_NODE_NAMESIZE, "%s",
rte_node_id_to_name(node_map[stage + 1][i]));
node_data->next_nodes[edges] = node_map[stage + 1][i];
node_data->next_percentage[edges] =
edge_map[stage + 1][i][node];
edges++;
total_percent += edge_map[stage + 1][i][node];
}
}
if (edges >= MAX_EDGES_PER_NODE || (edges && total_percent != 100)) {
for (i = 0; i < edges; i++)
free(ename[i]);
return RTE_EDGE_ID_INVALID;
}
return edges;
}
static int
graph_init(const char *gname, uint8_t nb_srcs, uint8_t nb_sinks,
uint32_t stages, uint16_t nodes_per_stage,
uint8_t src_map[][nodes_per_stage], uint8_t snk_map[][nb_sinks],
uint8_t edge_map[][nodes_per_stage][nodes_per_stage],
uint8_t burst_one)
{
struct test_graph_perf *graph_data;
char nname[RTE_NODE_NAMESIZE / 2];
struct test_node_data *node_data;
char *ename[nodes_per_stage];
struct rte_graph_param gconf;
const struct rte_memzone *mz;
uint8_t total_percent = 0;
rte_node_t *src_nodes;
rte_node_t *snk_nodes;
rte_node_t **node_map;
char **node_patterns;
rte_graph_t graph_id;
rte_edge_t edges;
rte_edge_t count;
uint32_t i, j, k;
mz = rte_memzone_reserve(TEST_GRAPH_PERF_MZ,
sizeof(struct test_graph_perf), 0, 0);
if (mz == NULL) {
printf("Failed to allocate graph common memory\n");
return -ENOMEM;
}
graph_data = mz->addr;
graph_data->nb_nodes = 0;
graph_data->node_data =
malloc(sizeof(struct test_node_data) *
(nb_srcs + nb_sinks + stages * nodes_per_stage));
if (graph_data->node_data == NULL) {
printf("Failed to reserve memzone for graph data\n");
goto memzone_free;
}
node_patterns = malloc(sizeof(char *) *
(nb_srcs + nb_sinks + stages * nodes_per_stage));
if (node_patterns == NULL) {
printf("Failed to reserve memory for node patterns\n");
goto data_free;
}
src_nodes = malloc(sizeof(rte_node_t) * nb_srcs);
if (src_nodes == NULL) {
printf("Failed to reserve memory for src nodes\n");
goto pattern_free;
}
snk_nodes = malloc(sizeof(rte_node_t) * nb_sinks);
if (snk_nodes == NULL) {
printf("Failed to reserve memory for snk nodes\n");
goto src_free;
}
node_map = malloc(sizeof(rte_node_t *) * stages +
sizeof(rte_node_t) * nodes_per_stage * stages);
if (node_map == NULL) {
printf("Failed to reserve memory for node map\n");
goto snk_free;
}
/* Setup the Graph */
for (i = 0; i < stages; i++) {
node_map[i] =
(rte_node_t *)(node_map + stages) + nodes_per_stage * i;
for (j = 0; j < nodes_per_stage; j++) {
total_percent = 0;
for (k = 0; k < nodes_per_stage; k++)
total_percent += edge_map[i][j][k];
if (!total_percent)
continue;
node_patterns[graph_data->nb_nodes] =
malloc(RTE_NODE_NAMESIZE);
if (node_patterns[graph_data->nb_nodes] == NULL) {
printf("Failed to create memory for pattern\n");
goto pattern_name_free;
}
/* Clone a worker node */
snprintf(nname, sizeof(nname), "%d-%d", i, j);
node_map[i][j] =
graph_node_get(TEST_GRAPH_WRK_NAME, nname);
if (node_map[i][j] == RTE_NODE_ID_INVALID) {
printf("Failed to create node[%s]\n", nname);
graph_data->nb_nodes++;
goto pattern_name_free;
}
snprintf(node_patterns[graph_data->nb_nodes],
RTE_NODE_NAMESIZE, "%s",
rte_node_id_to_name(node_map[i][j]));
node_data =
&graph_data->node_data[graph_data->nb_nodes];
node_data->node_id = node_map[i][j];
node_data->is_sink = false;
graph_data->nb_nodes++;
}
}
for (i = 0; i < stages - 1; i++) {
for (j = 0; j < nodes_per_stage; j++) {
/* Count edges i.e connections of worker node to next */
node_data =
graph_get_node_data(graph_data, node_map[i][j]);
edges = graph_node_count_edges(i, j, nodes_per_stage,
edge_map, ename,
node_data, node_map);
if (edges == RTE_EDGE_ID_INVALID) {
printf("Invalid edge configuration\n");
goto pattern_name_free;
}
if (!edges)
continue;
/* Connect a node in stage 'i' to nodes
* in stage 'i + 1' with edges.
*/
count = rte_node_edge_update(
node_map[i][j], 0,
(const char **)(uintptr_t)ename, edges);
for (k = 0; k < edges; k++)
free(ename[k]);
if (count != edges) {
printf("Couldn't add edges %d %d\n", edges,
count);
goto pattern_name_free;
}
}
}
/* Setup Source nodes */
for (i = 0; i < nb_srcs; i++) {
edges = 0;
total_percent = 0;
node_patterns[graph_data->nb_nodes] = malloc(RTE_NODE_NAMESIZE);
if (node_patterns[graph_data->nb_nodes] == NULL) {
printf("Failed to create memory for pattern\n");
goto pattern_name_free;
}
/* Clone a source node */
snprintf(nname, sizeof(nname), "%d", i);
src_nodes[i] =
graph_node_get(burst_one ? TEST_GRAPH_SRC_BRST_ONE_NAME
: TEST_GRAPH_SRC_NAME,
nname);
if (src_nodes[i] == RTE_NODE_ID_INVALID) {
printf("Failed to create node[%s]\n", nname);
graph_data->nb_nodes++;
goto pattern_name_free;
}
snprintf(node_patterns[graph_data->nb_nodes], RTE_NODE_NAMESIZE,
"%s", rte_node_id_to_name(src_nodes[i]));
node_data = &graph_data->node_data[graph_data->nb_nodes];
node_data->node_id = src_nodes[i];
node_data->is_sink = false;
graph_data->nb_nodes++;
/* Prepare next node list to connect to */
for (j = 0; j < nodes_per_stage; j++) {
if (!src_map[i][j])
continue;
ename[edges] = malloc(sizeof(char) * RTE_NODE_NAMESIZE);
snprintf(ename[edges], RTE_NODE_NAMESIZE, "%s",
rte_node_id_to_name(node_map[0][j]));
node_data->next_nodes[edges] = node_map[0][j];
node_data->next_percentage[edges] = src_map[i][j];
edges++;
total_percent += src_map[i][j];
}
if (!edges)
continue;
if (edges >= MAX_EDGES_PER_NODE || total_percent != 100) {
printf("Invalid edge configuration\n");
for (j = 0; j < edges; j++)
free(ename[j]);
goto pattern_name_free;
}
/* Connect to list of next nodes using edges */
count = rte_node_edge_update(src_nodes[i], 0,
(const char **)(uintptr_t)ename,
edges);
for (k = 0; k < edges; k++)
free(ename[k]);
if (count != edges) {
printf("Couldn't add edges %d %d\n", edges, count);
goto pattern_name_free;
}
}
/* Setup Sink nodes */
for (i = 0; i < nb_sinks; i++) {
node_patterns[graph_data->nb_nodes] = malloc(RTE_NODE_NAMESIZE);
if (node_patterns[graph_data->nb_nodes] == NULL) {
printf("Failed to create memory for pattern\n");
goto pattern_name_free;
}
/* Clone a sink node */
snprintf(nname, sizeof(nname), "%d", i);
snk_nodes[i] = graph_node_get(TEST_GRAPH_SNK_NAME, nname);
if (snk_nodes[i] == RTE_NODE_ID_INVALID) {
printf("Failed to create node[%s]\n", nname);
graph_data->nb_nodes++;
goto pattern_name_free;
}
snprintf(node_patterns[graph_data->nb_nodes], RTE_NODE_NAMESIZE,
"%s", rte_node_id_to_name(snk_nodes[i]));
node_data = &graph_data->node_data[graph_data->nb_nodes];
node_data->node_id = snk_nodes[i];
node_data->is_sink = true;
graph_data->nb_nodes++;
}
/* Connect last stage worker nodes to sink nodes */
for (i = 0; i < nodes_per_stage; i++) {
edges = 0;
total_percent = 0;
node_data = graph_get_node_data(graph_data,
node_map[stages - 1][i]);
/* Prepare list of sink nodes to connect to */
for (j = 0; j < nb_sinks; j++) {
if (!snk_map[i][j])
continue;
ename[edges] = malloc(sizeof(char) * RTE_NODE_NAMESIZE);
snprintf(ename[edges], RTE_NODE_NAMESIZE, "%s",
rte_node_id_to_name(snk_nodes[j]));
node_data->next_nodes[edges] = snk_nodes[j];
node_data->next_percentage[edges] = snk_map[i][j];
edges++;
total_percent += snk_map[i][j];
}
if (!edges)
continue;
if (edges >= MAX_EDGES_PER_NODE || total_percent != 100) {
printf("Invalid edge configuration\n");
for (j = 0; j < edges; j++)
free(ename[i]);
goto pattern_name_free;
}
/* Connect a worker node to a list of sink nodes */
count = rte_node_edge_update(node_map[stages - 1][i], 0,
(const char **)(uintptr_t)ename,
edges);
for (k = 0; k < edges; k++)
free(ename[k]);
if (count != edges) {
printf("Couldn't add edges %d %d\n", edges, count);
goto pattern_name_free;
}
}
/* Create a Graph */
gconf.socket_id = SOCKET_ID_ANY;
gconf.nb_node_patterns = graph_data->nb_nodes;
gconf.node_patterns = (const char **)(uintptr_t)node_patterns;
graph_id = rte_graph_create(gname, &gconf);
if (graph_id == RTE_GRAPH_ID_INVALID) {
printf("Graph creation failed with error = %d\n", rte_errno);
goto pattern_name_free;
}
graph_data->graph_id = graph_id;
free(node_map);
for (i = 0; i < graph_data->nb_nodes; i++)
free(node_patterns[i]);
free(snk_nodes);
free(src_nodes);
free(node_patterns);
return 0;
pattern_name_free:
free(node_map);
for (i = 0; i < graph_data->nb_nodes; i++)
free(node_patterns[i]);
snk_free:
free(snk_nodes);
src_free:
free(src_nodes);
pattern_free:
free(node_patterns);
data_free:
free(graph_data->node_data);
memzone_free:
rte_memzone_free(mz);
return -ENOMEM;
}
/* Worker thread function */
static int
_graph_perf_wrapper(void *args)
{
struct graph_lcore_data *data = args;
struct rte_graph *graph;
/* Lookup graph */
graph = rte_graph_lookup(rte_graph_id_to_name(data->graph_id));
/* Graph walk until done */
while (!data->done)
rte_graph_walk(graph);
return 0;
}
static int
measure_perf_get(rte_graph_t graph_id)
{
const char *pattern = rte_graph_id_to_name(graph_id);
uint32_t lcore_id = rte_get_next_lcore(-1, 1, 0);
struct rte_graph_cluster_stats_param param;
struct rte_graph_cluster_stats *stats;
struct graph_lcore_data *data;
data = rte_zmalloc("Graph_perf", sizeof(struct graph_lcore_data),
RTE_CACHE_LINE_SIZE);
data->graph_id = graph_id;
data->done = 0;
/* Run graph worker thread function */
rte_eal_remote_launch(_graph_perf_wrapper, data, lcore_id);
/* Collect stats for few msecs */
if (rte_graph_has_stats_feature()) {
memset(&param, 0, sizeof(param));
param.f = stdout;
param.socket_id = SOCKET_ID_ANY;
param.graph_patterns = &pattern;
param.nb_graph_patterns = 1;
stats = rte_graph_cluster_stats_create(&param);
if (stats == NULL) {
printf("Failed to create stats\n");
return -ENOMEM;
}
rte_delay_ms(3E2);
rte_graph_cluster_stats_get(stats, true);
rte_delay_ms(1E3);
rte_graph_cluster_stats_get(stats, false);
rte_graph_cluster_stats_destroy(stats);
} else
rte_delay_ms(1E3);
data->done = 1;
rte_eal_wait_lcore(lcore_id);
return 0;
}
static inline void
graph_fini(void)
{
const struct rte_memzone *mz = rte_memzone_lookup(TEST_GRAPH_PERF_MZ);
struct test_graph_perf *graph_data;
if (mz == NULL)
return;
graph_data = mz->addr;
rte_graph_destroy(graph_data->graph_id);
free(graph_data->node_data);
rte_memzone_free(rte_memzone_lookup(TEST_GRAPH_PERF_MZ));
}
static int
measure_perf(void)
{
const struct rte_memzone *mz;
struct test_graph_perf *graph_data;
mz = rte_memzone_lookup(TEST_GRAPH_PERF_MZ);
if (mz == NULL)
return -ENOMEM;
graph_data = mz->addr;
return measure_perf_get(graph_data->graph_id);
}
static inline int
graph_hr_4s_1n_1src_1snk(void)
{
return measure_perf();
}
static inline int
graph_hr_4s_1n_1src_1snk_brst_one(void)
{
return measure_perf();
}
static inline int
graph_hr_4s_1n_2src_1snk(void)
{
return measure_perf();
}
static inline int
graph_hr_4s_1n_1src_2snk(void)
{
return measure_perf();
}
static inline int
graph_tree_4s_4n_1src_4snk(void)
{
return measure_perf();
}
static inline int
graph_reverse_tree_3s_4n_1src_1snk(void)
{
return measure_perf();
}
static inline int
graph_parallel_tree_5s_4n_4src_4snk(void)
{
return measure_perf();
}
/* Graph Topology
* nodes per stage: 1
* stages: 4
* src: 1
* sink: 1
*/
static inline int
graph_init_hr(void)
{
uint8_t edge_map[][1][1] = {
{ {100} },
{ {100} },
{ {100} },
{ {100} },
};
uint8_t src_map[][1] = { {100} };
uint8_t snk_map[][1] = { {100} };
return graph_init("graph_hr", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 0);
}
/* Graph Topology
* nodes per stage: 1
* stages: 4
* src: 1
* sink: 1
*/
static inline int
graph_init_hr_brst_one(void)
{
uint8_t edge_map[][1][1] = {
{ {100} },
{ {100} },
{ {100} },
{ {100} },
};
uint8_t src_map[][1] = { {100} };
uint8_t snk_map[][1] = { {100} };
return graph_init("graph_hr", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 1);
}
/* Graph Topology
* nodes per stage: 1
* stages: 4
* src: 2
* sink: 1
*/
static inline int
graph_init_hr_multi_src(void)
{
uint8_t edge_map[][1][1] = {
{ {100} },
{ {100} },
{ {100} },
{ {100} },
};
uint8_t src_map[][1] = {
{100}, {100}
};
uint8_t snk_map[][1] = { {100} };
return graph_init("graph_hr", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 0);
}
/* Graph Topology
* nodes per stage: 1
* stages: 4
* src: 1
* sink: 2
*/
static inline int
graph_init_hr_multi_snk(void)
{
uint8_t edge_map[][1][1] = {
{ {100} },
{ {100} },
{ {100} },
{ {100} },
};
uint8_t src_map[][1] = { {100} };
uint8_t snk_map[][2] = { {50, 50} };
return graph_init("graph_hr", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 0);
}
/* Graph Topology
* nodes per stage: 4
* stages: 4
* src: 1
* sink: 4
*/
static inline int
graph_init_tree(void)
{
uint8_t edge_map[][4][4] = {
{
{100, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
},
{
{50, 0, 0, 0},
{50, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
},
{
{33, 33, 0, 0},
{34, 34, 0, 0},
{33, 33, 0, 0},
{0, 0, 0, 0}
},
{
{25, 25, 25, 0},
{25, 25, 25, 0},
{25, 25, 25, 0},
{25, 25, 25, 0}
}
};
uint8_t src_map[][4] = { {100, 0, 0, 0} };
uint8_t snk_map[][4] = {
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
};
return graph_init("graph_full_split", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 0);
}
/* Graph Topology
* nodes per stage: 4
* stages: 3
* src: 1
* sink: 1
*/
static inline int
graph_init_reverse_tree(void)
{
uint8_t edge_map[][4][4] = {
{
{25, 25, 25, 25},
{25, 25, 25, 25},
{25, 25, 25, 25},
{25, 25, 25, 25}
},
{
{33, 33, 33, 33},
{33, 33, 33, 33},
{34, 34, 34, 34},
{0, 0, 0, 0}
},
{
{50, 50, 50, 0},
{50, 50, 50, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
},
};
uint8_t src_map[][4] = { {25, 25, 25, 25} };
uint8_t snk_map[][1] = { {100}, {100}, {0}, {0} };
return graph_init("graph_full_split", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 0);
}
/* Graph Topology
* nodes per stage: 4
* stages: 5
* src: 4
* sink: 4
*/
static inline int
graph_init_parallel_tree(void)
{
uint8_t edge_map[][4][4] = {
{
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
},
{
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
},
{
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
},
{
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
},
{
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
},
};
uint8_t src_map[][4] = {
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
};
uint8_t snk_map[][4] = {
{100, 0, 0, 0},
{0, 100, 0, 0},
{0, 0, 100, 0},
{0, 0, 0, 100}
};
return graph_init("graph_parallel", SOURCES(src_map), SINKS(snk_map),
STAGES(edge_map), NODES_PER_STAGE(edge_map), src_map,
snk_map, edge_map, 0);
}
/** Graph Creation cheat sheet
* edge_map -> dictates graph flow from worker stage 0 to worker stage n-1.
* src_map -> dictates source nodes enqueue percentage to worker stage 0.
* snk_map -> dictates stage n-1 enqueue percentage to sink.
*
* Layout:
* edge_map[<nb_stages>][<nodes_per_stg>][<nodes_in_nxt_stg = nodes_per_stg>]
* src_map[<nb_sources>][<nodes_in_stage0 = nodes_per_stage>]
* snk_map[<nodes_in_stage(n-1) = nodes_per_stage>][<nb_sinks>]
*
* The last array dictates the percentage of received objs to enqueue to next
* stage.
*
* Note: edge_map[][0][] will always be unused as it will receive from source
*
* Example:
* Graph:
* http://bit.ly/2PqbqOy
* Each stage(n) connects to all nodes in the next stage in decreasing
* order.
* Since we can't resize the edge_map dynamically we get away by creating
* dummy nodes and assigning 0 percentages.
* Max nodes across all stages = 4
* stages = 3
* nb_src = 1
* nb_snk = 1
* // Stages
* edge_map[][4][4] = {
* // Nodes per stage
* {
* {25, 25, 25, 25},
* {25, 25, 25, 25},
* {25, 25, 25, 25},
* {25, 25, 25, 25}
* }, // This will be unused.
* {
* // Nodes enabled in current stage + prev stage enq %
* {33, 33, 33, 33},
* {33, 33, 33, 33},
* {34, 34, 34, 34},
* {0, 0, 0, 0}
* },
* {
* {50, 50, 50, 0},
* {50, 50, 50, 0},
* {0, 0, 0, 0},
* {0, 0, 0, 0}
* },
* };
* Above, each stage tells how much it should receive from previous except
* from stage_0.
*
* src_map[][4] = { {25, 25, 25, 25} };
* Here, we tell each source the % it has to send to stage_0 nodes. In
* case we want 2 source node we can declare as
* src_map[][4] = { {25, 25, 25, 25}, {25, 25, 25, 25} };
*
* snk_map[][1] = { {100}, {100}, {0}, {0} }
* Here, we tell stage - 1 nodes how much to enqueue to sink_0.
* If we have 2 sinks we can do as follows
* snk_map[][2] = { {50, 50}, {50, 50}, {0, 0}, {0, 0} }
*/
static struct unit_test_suite graph_perf_testsuite = {
.suite_name = "Graph library performance test suite",
.setup = graph_perf_setup,
.teardown = graph_perf_teardown,
.unit_test_cases = {
TEST_CASE_ST(graph_init_hr, graph_fini,
graph_hr_4s_1n_1src_1snk),
TEST_CASE_ST(graph_init_hr_brst_one, graph_fini,
graph_hr_4s_1n_1src_1snk_brst_one),
TEST_CASE_ST(graph_init_hr_multi_src, graph_fini,
graph_hr_4s_1n_2src_1snk),
TEST_CASE_ST(graph_init_hr_multi_snk, graph_fini,
graph_hr_4s_1n_1src_2snk),
TEST_CASE_ST(graph_init_tree, graph_fini,
graph_tree_4s_4n_1src_4snk),
TEST_CASE_ST(graph_init_reverse_tree, graph_fini,
graph_reverse_tree_3s_4n_1src_1snk),
TEST_CASE_ST(graph_init_parallel_tree, graph_fini,
graph_parallel_tree_5s_4n_4src_4snk),
TEST_CASES_END(), /**< NULL terminate unit test array */
},
};
static int
test_graph_perf_func(void)
{
return unit_test_suite_runner(&graph_perf_testsuite);
}
REGISTER_TEST_COMMAND(graph_perf_autotest, test_graph_perf_func);