dpdk-fm10k/lib/librte_latencystats/rte_latencystats.c
Reshma Pattan 2a178702c0 latency: fix calculation for multi-thread
Make latency calculation multithread safe by
using spinlock.

Fixes: 5cd3cac9ed ("latency: added new library for latency stats")
Cc: stable@dpdk.org

Signed-off-by: Reshma Pattan <reshma.pattan@intel.com>
2020-01-20 01:32:50 +01:00

364 lines
9.1 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <unistd.h>
#include <sys/types.h>
#include <stdbool.h>
#include <math.h>
#include <rte_string_fns.h>
#include <rte_mbuf.h>
#include <rte_log.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_metrics.h>
#include <rte_memzone.h>
#include <rte_lcore.h>
#include "rte_latencystats.h"
/** Nano seconds per second */
#define NS_PER_SEC 1E9
/** Clock cycles per nano second */
static uint64_t
latencystat_cycles_per_ns(void)
{
return rte_get_timer_hz() / NS_PER_SEC;
}
/* Macros for printing using RTE_LOG */
#define RTE_LOGTYPE_LATENCY_STATS RTE_LOGTYPE_USER1
static const char *MZ_RTE_LATENCY_STATS = "rte_latencystats";
static int latency_stats_index;
static uint64_t samp_intvl;
static uint64_t timer_tsc;
static uint64_t prev_tsc;
struct rte_latency_stats {
float min_latency; /**< Minimum latency in nano seconds */
float avg_latency; /**< Average latency in nano seconds */
float max_latency; /**< Maximum latency in nano seconds */
float jitter; /** Latency variation */
rte_spinlock_t lock; /** Latency calculation lock */
};
static struct rte_latency_stats *glob_stats;
struct rxtx_cbs {
const struct rte_eth_rxtx_callback *cb;
};
static struct rxtx_cbs rx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT];
static struct rxtx_cbs tx_cbs[RTE_MAX_ETHPORTS][RTE_MAX_QUEUES_PER_PORT];
struct latency_stats_nameoff {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned int offset;
};
static const struct latency_stats_nameoff lat_stats_strings[] = {
{"min_latency_ns", offsetof(struct rte_latency_stats, min_latency)},
{"avg_latency_ns", offsetof(struct rte_latency_stats, avg_latency)},
{"max_latency_ns", offsetof(struct rte_latency_stats, max_latency)},
{"jitter_ns", offsetof(struct rte_latency_stats, jitter)},
};
#define NUM_LATENCY_STATS (sizeof(lat_stats_strings) / \
sizeof(lat_stats_strings[0]))
int32_t
rte_latencystats_update(void)
{
unsigned int i;
float *stats_ptr = NULL;
uint64_t values[NUM_LATENCY_STATS] = {0};
int ret;
for (i = 0; i < NUM_LATENCY_STATS; i++) {
stats_ptr = RTE_PTR_ADD(glob_stats,
lat_stats_strings[i].offset);
values[i] = (uint64_t)floor((*stats_ptr)/
latencystat_cycles_per_ns());
}
ret = rte_metrics_update_values(RTE_METRICS_GLOBAL,
latency_stats_index,
values, NUM_LATENCY_STATS);
if (ret < 0)
RTE_LOG(INFO, LATENCY_STATS, "Failed to push the stats\n");
return ret;
}
static void
rte_latencystats_fill_values(struct rte_metric_value *values)
{
unsigned int i;
float *stats_ptr = NULL;
for (i = 0; i < NUM_LATENCY_STATS; i++) {
stats_ptr = RTE_PTR_ADD(glob_stats,
lat_stats_strings[i].offset);
values[i].key = i;
values[i].value = (uint64_t)floor((*stats_ptr)/
latencystat_cycles_per_ns());
}
}
static uint16_t
add_time_stamps(uint16_t pid __rte_unused,
uint16_t qid __rte_unused,
struct rte_mbuf **pkts,
uint16_t nb_pkts,
uint16_t max_pkts __rte_unused,
void *user_cb __rte_unused)
{
unsigned int i;
uint64_t diff_tsc, now;
/*
* For every sample interval,
* time stamp is marked on one received packet.
*/
now = rte_rdtsc();
for (i = 0; i < nb_pkts; i++) {
diff_tsc = now - prev_tsc;
timer_tsc += diff_tsc;
if ((pkts[i]->ol_flags & PKT_RX_TIMESTAMP) == 0
&& (timer_tsc >= samp_intvl)) {
pkts[i]->timestamp = now;
pkts[i]->ol_flags |= PKT_RX_TIMESTAMP;
timer_tsc = 0;
}
prev_tsc = now;
now = rte_rdtsc();
}
return nb_pkts;
}
static uint16_t
calc_latency(uint16_t pid __rte_unused,
uint16_t qid __rte_unused,
struct rte_mbuf **pkts,
uint16_t nb_pkts,
void *_ __rte_unused)
{
unsigned int i, cnt = 0;
uint64_t now;
float latency[nb_pkts];
static float prev_latency;
/*
* Alpha represents degree of weighting decrease in EWMA,
* a constant smoothing factor between 0 and 1. The value
* is used below for measuring average latency.
*/
const float alpha = 0.2;
now = rte_rdtsc();
for (i = 0; i < nb_pkts; i++) {
if (pkts[i]->ol_flags & PKT_RX_TIMESTAMP)
latency[cnt++] = now - pkts[i]->timestamp;
}
rte_spinlock_lock(&glob_stats->lock);
for (i = 0; i < cnt; i++) {
/*
* The jitter is calculated as statistical mean of interpacket
* delay variation. The "jitter estimate" is computed by taking
* the absolute values of the ipdv sequence and applying an
* exponential filter with parameter 1/16 to generate the
* estimate. i.e J=J+(|D(i-1,i)|-J)/16. Where J is jitter,
* D(i-1,i) is difference in latency of two consecutive packets
* i-1 and i.
* Reference: Calculated as per RFC 5481, sec 4.1,
* RFC 3393 sec 4.5, RFC 1889 sec.
*/
glob_stats->jitter += (fabsf(prev_latency - latency[i])
- glob_stats->jitter)/16;
if (glob_stats->min_latency == 0)
glob_stats->min_latency = latency[i];
else if (latency[i] < glob_stats->min_latency)
glob_stats->min_latency = latency[i];
else if (latency[i] > glob_stats->max_latency)
glob_stats->max_latency = latency[i];
/*
* The average latency is measured using exponential moving
* average, i.e. using EWMA
* https://en.wikipedia.org/wiki/Moving_average
*/
glob_stats->avg_latency +=
alpha * (latency[i] - glob_stats->avg_latency);
prev_latency = latency[i];
}
rte_spinlock_unlock(&glob_stats->lock);
return nb_pkts;
}
int
rte_latencystats_init(uint64_t app_samp_intvl,
rte_latency_stats_flow_type_fn user_cb)
{
unsigned int i;
uint16_t pid;
uint16_t qid;
struct rxtx_cbs *cbs = NULL;
const char *ptr_strings[NUM_LATENCY_STATS] = {0};
const struct rte_memzone *mz = NULL;
const unsigned int flags = 0;
int ret;
if (rte_memzone_lookup(MZ_RTE_LATENCY_STATS))
return -EEXIST;
/** Allocate stats in shared memory fo multi process support */
mz = rte_memzone_reserve(MZ_RTE_LATENCY_STATS, sizeof(*glob_stats),
rte_socket_id(), flags);
if (mz == NULL) {
RTE_LOG(ERR, LATENCY_STATS, "Cannot reserve memory: %s:%d\n",
__func__, __LINE__);
return -ENOMEM;
}
glob_stats = mz->addr;
rte_spinlock_init(&glob_stats->lock);
samp_intvl = app_samp_intvl * latencystat_cycles_per_ns();
/** Register latency stats with stats library */
for (i = 0; i < NUM_LATENCY_STATS; i++)
ptr_strings[i] = lat_stats_strings[i].name;
latency_stats_index = rte_metrics_reg_names(ptr_strings,
NUM_LATENCY_STATS);
if (latency_stats_index < 0) {
RTE_LOG(DEBUG, LATENCY_STATS,
"Failed to register latency stats names\n");
return -1;
}
/** Register Rx/Tx callbacks */
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_dev_info dev_info;
ret = rte_eth_dev_info_get(pid, &dev_info);
if (ret != 0) {
RTE_LOG(INFO, LATENCY_STATS,
"Error during getting device (port %u) info: %s\n",
pid, strerror(-ret));
continue;
}
for (qid = 0; qid < dev_info.nb_rx_queues; qid++) {
cbs = &rx_cbs[pid][qid];
cbs->cb = rte_eth_add_first_rx_callback(pid, qid,
add_time_stamps, user_cb);
if (!cbs->cb)
RTE_LOG(INFO, LATENCY_STATS, "Failed to "
"register Rx callback for pid=%d, "
"qid=%d\n", pid, qid);
}
for (qid = 0; qid < dev_info.nb_tx_queues; qid++) {
cbs = &tx_cbs[pid][qid];
cbs->cb = rte_eth_add_tx_callback(pid, qid,
calc_latency, user_cb);
if (!cbs->cb)
RTE_LOG(INFO, LATENCY_STATS, "Failed to "
"register Tx callback for pid=%d, "
"qid=%d\n", pid, qid);
}
}
return 0;
}
int
rte_latencystats_uninit(void)
{
uint16_t pid;
uint16_t qid;
int ret = 0;
struct rxtx_cbs *cbs = NULL;
const struct rte_memzone *mz = NULL;
/** De register Rx/Tx callbacks */
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_dev_info dev_info;
ret = rte_eth_dev_info_get(pid, &dev_info);
if (ret != 0) {
RTE_LOG(INFO, LATENCY_STATS,
"Error during getting device (port %u) info: %s\n",
pid, strerror(-ret));
continue;
}
for (qid = 0; qid < dev_info.nb_rx_queues; qid++) {
cbs = &rx_cbs[pid][qid];
ret = rte_eth_remove_rx_callback(pid, qid, cbs->cb);
if (ret)
RTE_LOG(INFO, LATENCY_STATS, "failed to "
"remove Rx callback for pid=%d, "
"qid=%d\n", pid, qid);
}
for (qid = 0; qid < dev_info.nb_tx_queues; qid++) {
cbs = &tx_cbs[pid][qid];
ret = rte_eth_remove_tx_callback(pid, qid, cbs->cb);
if (ret)
RTE_LOG(INFO, LATENCY_STATS, "failed to "
"remove Tx callback for pid=%d, "
"qid=%d\n", pid, qid);
}
}
/* free up the memzone */
mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS);
if (mz)
rte_memzone_free(mz);
return 0;
}
int
rte_latencystats_get_names(struct rte_metric_name *names, uint16_t size)
{
unsigned int i;
if (names == NULL || size < NUM_LATENCY_STATS)
return NUM_LATENCY_STATS;
for (i = 0; i < NUM_LATENCY_STATS; i++)
strlcpy(names[i].name, lat_stats_strings[i].name,
sizeof(names[i].name));
return NUM_LATENCY_STATS;
}
int
rte_latencystats_get(struct rte_metric_value *values, uint16_t size)
{
if (size < NUM_LATENCY_STATS || values == NULL)
return NUM_LATENCY_STATS;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
const struct rte_memzone *mz;
mz = rte_memzone_lookup(MZ_RTE_LATENCY_STATS);
if (mz == NULL) {
RTE_LOG(ERR, LATENCY_STATS,
"Latency stats memzone not found\n");
return -ENOMEM;
}
glob_stats = mz->addr;
}
/* Retrieve latency stats */
rte_latencystats_fill_values(values);
return NUM_LATENCY_STATS;
}