dpdk-fm10k/lib/librte_eal/linux/eal.c
Thomas Monjalon a083f8cc77 eal: move OS-specific sub-directories
Since the kernel modules are moved to kernel/ directory,
there is no need anymore for the sub-directory eal/ in
linux/, freebsd/ and windows/.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: David Marchand <david.marchand@redhat.com>
2020-03-31 13:08:55 +02:00

1394 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation.
* Copyright(c) 2012-2014 6WIND S.A.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdarg.h>
#include <unistd.h>
#include <pthread.h>
#include <syslog.h>
#include <getopt.h>
#include <sys/file.h>
#include <dirent.h>
#include <fcntl.h>
#include <fnmatch.h>
#include <stddef.h>
#include <errno.h>
#include <limits.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <sys/stat.h>
#if defined(RTE_ARCH_X86)
#include <sys/io.h>
#endif
#include <linux/version.h>
#include <rte_compat.h>
#include <rte_common.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_errno.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_service_component.h>
#include <rte_log.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_string_fns.h>
#include <rte_cpuflags.h>
#include <rte_interrupts.h>
#include <rte_bus.h>
#include <rte_dev.h>
#include <rte_devargs.h>
#include <rte_version.h>
#include <rte_atomic.h>
#include <malloc_heap.h>
#include <rte_vfio.h>
#include <rte_option.h>
#include "eal_private.h"
#include "eal_thread.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_hugepages.h"
#include "eal_memcfg.h"
#include "eal_options.h"
#include "eal_vfio.h"
#include "hotplug_mp.h"
#define MEMSIZE_IF_NO_HUGE_PAGE (64ULL * 1024ULL * 1024ULL)
#define SOCKET_MEM_STRLEN (RTE_MAX_NUMA_NODES * 10)
#define KERNEL_IOMMU_GROUPS_PATH "/sys/kernel/iommu_groups"
/* Allow the application to print its usage message too if set */
static rte_usage_hook_t rte_application_usage_hook = NULL;
/* early configuration structure, when memory config is not mmapped */
static struct rte_mem_config early_mem_config;
/* define fd variable here, because file needs to be kept open for the
* duration of the program, as we hold a write lock on it in the primary proc */
static int mem_cfg_fd = -1;
static struct flock wr_lock = {
.l_type = F_WRLCK,
.l_whence = SEEK_SET,
.l_start = offsetof(struct rte_mem_config, memsegs),
.l_len = sizeof(early_mem_config.memsegs),
};
/* Address of global and public configuration */
static struct rte_config rte_config = {
.mem_config = &early_mem_config,
};
/* internal configuration (per-core) */
struct lcore_config lcore_config[RTE_MAX_LCORE];
/* internal configuration */
struct internal_config internal_config;
/* used by rte_rdtsc() */
int rte_cycles_vmware_tsc_map;
/* platform-specific runtime dir */
static char runtime_dir[PATH_MAX];
static const char *default_runtime_dir = "/var/run";
int
eal_create_runtime_dir(void)
{
const char *directory = default_runtime_dir;
const char *xdg_runtime_dir = getenv("XDG_RUNTIME_DIR");
const char *fallback = "/tmp";
char tmp[PATH_MAX];
int ret;
if (getuid() != 0) {
/* try XDG path first, fall back to /tmp */
if (xdg_runtime_dir != NULL)
directory = xdg_runtime_dir;
else
directory = fallback;
}
/* create DPDK subdirectory under runtime dir */
ret = snprintf(tmp, sizeof(tmp), "%s/dpdk", directory);
if (ret < 0 || ret == sizeof(tmp)) {
RTE_LOG(ERR, EAL, "Error creating DPDK runtime path name\n");
return -1;
}
/* create prefix-specific subdirectory under DPDK runtime dir */
ret = snprintf(runtime_dir, sizeof(runtime_dir), "%s/%s",
tmp, eal_get_hugefile_prefix());
if (ret < 0 || ret == sizeof(runtime_dir)) {
RTE_LOG(ERR, EAL, "Error creating prefix-specific runtime path name\n");
return -1;
}
/* create the path if it doesn't exist. no "mkdir -p" here, so do it
* step by step.
*/
ret = mkdir(tmp, 0700);
if (ret < 0 && errno != EEXIST) {
RTE_LOG(ERR, EAL, "Error creating '%s': %s\n",
tmp, strerror(errno));
return -1;
}
ret = mkdir(runtime_dir, 0700);
if (ret < 0 && errno != EEXIST) {
RTE_LOG(ERR, EAL, "Error creating '%s': %s\n",
runtime_dir, strerror(errno));
return -1;
}
return 0;
}
int
eal_clean_runtime_dir(void)
{
DIR *dir;
struct dirent *dirent;
int dir_fd, fd, lck_result;
static const char * const filters[] = {
"fbarray_*",
"mp_socket_*"
};
/* open directory */
dir = opendir(runtime_dir);
if (!dir) {
RTE_LOG(ERR, EAL, "Unable to open runtime directory %s\n",
runtime_dir);
goto error;
}
dir_fd = dirfd(dir);
/* lock the directory before doing anything, to avoid races */
if (flock(dir_fd, LOCK_EX) < 0) {
RTE_LOG(ERR, EAL, "Unable to lock runtime directory %s\n",
runtime_dir);
goto error;
}
dirent = readdir(dir);
if (!dirent) {
RTE_LOG(ERR, EAL, "Unable to read runtime directory %s\n",
runtime_dir);
goto error;
}
while (dirent != NULL) {
unsigned int f_idx;
bool skip = true;
/* skip files that don't match the patterns */
for (f_idx = 0; f_idx < RTE_DIM(filters); f_idx++) {
const char *filter = filters[f_idx];
if (fnmatch(filter, dirent->d_name, 0) == 0) {
skip = false;
break;
}
}
if (skip) {
dirent = readdir(dir);
continue;
}
/* try and lock the file */
fd = openat(dir_fd, dirent->d_name, O_RDONLY);
/* skip to next file */
if (fd == -1) {
dirent = readdir(dir);
continue;
}
/* non-blocking lock */
lck_result = flock(fd, LOCK_EX | LOCK_NB);
/* if lock succeeds, remove the file */
if (lck_result != -1)
unlinkat(dir_fd, dirent->d_name, 0);
close(fd);
dirent = readdir(dir);
}
/* closedir closes dir_fd and drops the lock */
closedir(dir);
return 0;
error:
if (dir)
closedir(dir);
RTE_LOG(ERR, EAL, "Error while clearing runtime dir: %s\n",
strerror(errno));
return -1;
}
const char *
rte_eal_get_runtime_dir(void)
{
return runtime_dir;
}
/* Return user provided mbuf pool ops name */
const char *
rte_eal_mbuf_user_pool_ops(void)
{
return internal_config.user_mbuf_pool_ops_name;
}
/* Return a pointer to the configuration structure */
struct rte_config *
rte_eal_get_configuration(void)
{
return &rte_config;
}
enum rte_iova_mode
rte_eal_iova_mode(void)
{
return rte_eal_get_configuration()->iova_mode;
}
/* parse a sysfs (or other) file containing one integer value */
int
eal_parse_sysfs_value(const char *filename, unsigned long *val)
{
FILE *f;
char buf[BUFSIZ];
char *end = NULL;
if ((f = fopen(filename, "r")) == NULL) {
RTE_LOG(ERR, EAL, "%s(): cannot open sysfs value %s\n",
__func__, filename);
return -1;
}
if (fgets(buf, sizeof(buf), f) == NULL) {
RTE_LOG(ERR, EAL, "%s(): cannot read sysfs value %s\n",
__func__, filename);
fclose(f);
return -1;
}
*val = strtoul(buf, &end, 0);
if ((buf[0] == '\0') || (end == NULL) || (*end != '\n')) {
RTE_LOG(ERR, EAL, "%s(): cannot parse sysfs value %s\n",
__func__, filename);
fclose(f);
return -1;
}
fclose(f);
return 0;
}
/* create memory configuration in shared/mmap memory. Take out
* a write lock on the memsegs, so we can auto-detect primary/secondary.
* This means we never close the file while running (auto-close on exit).
* We also don't lock the whole file, so that in future we can use read-locks
* on other parts, e.g. memzones, to detect if there are running secondary
* processes. */
static int
rte_eal_config_create(void)
{
size_t page_sz = sysconf(_SC_PAGE_SIZE);
size_t cfg_len = sizeof(*rte_config.mem_config);
size_t cfg_len_aligned = RTE_ALIGN(cfg_len, page_sz);
void *rte_mem_cfg_addr, *mapped_mem_cfg_addr;
int retval;
const char *pathname = eal_runtime_config_path();
if (internal_config.no_shconf)
return 0;
/* map the config before hugepage address so that we don't waste a page */
if (internal_config.base_virtaddr != 0)
rte_mem_cfg_addr = (void *)
RTE_ALIGN_FLOOR(internal_config.base_virtaddr -
sizeof(struct rte_mem_config), page_sz);
else
rte_mem_cfg_addr = NULL;
if (mem_cfg_fd < 0){
mem_cfg_fd = open(pathname, O_RDWR | O_CREAT, 0600);
if (mem_cfg_fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open '%s' for rte_mem_config\n",
pathname);
return -1;
}
}
retval = ftruncate(mem_cfg_fd, cfg_len);
if (retval < 0){
close(mem_cfg_fd);
mem_cfg_fd = -1;
RTE_LOG(ERR, EAL, "Cannot resize '%s' for rte_mem_config\n",
pathname);
return -1;
}
retval = fcntl(mem_cfg_fd, F_SETLK, &wr_lock);
if (retval < 0){
close(mem_cfg_fd);
mem_cfg_fd = -1;
RTE_LOG(ERR, EAL, "Cannot create lock on '%s'. Is another primary "
"process running?\n", pathname);
return -1;
}
/* reserve space for config */
rte_mem_cfg_addr = eal_get_virtual_area(rte_mem_cfg_addr,
&cfg_len_aligned, page_sz, 0, 0);
if (rte_mem_cfg_addr == NULL) {
RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config\n");
close(mem_cfg_fd);
mem_cfg_fd = -1;
return -1;
}
/* remap the actual file into the space we've just reserved */
mapped_mem_cfg_addr = mmap(rte_mem_cfg_addr,
cfg_len_aligned, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, mem_cfg_fd, 0);
if (mapped_mem_cfg_addr == MAP_FAILED) {
munmap(rte_mem_cfg_addr, cfg_len);
close(mem_cfg_fd);
mem_cfg_fd = -1;
RTE_LOG(ERR, EAL, "Cannot remap memory for rte_config\n");
return -1;
}
memcpy(rte_mem_cfg_addr, &early_mem_config, sizeof(early_mem_config));
rte_config.mem_config = rte_mem_cfg_addr;
/* store address of the config in the config itself so that secondary
* processes could later map the config into this exact location */
rte_config.mem_config->mem_cfg_addr = (uintptr_t) rte_mem_cfg_addr;
rte_config.mem_config->dma_maskbits = 0;
return 0;
}
/* attach to an existing shared memory config */
static int
rte_eal_config_attach(void)
{
struct rte_mem_config *mem_config;
const char *pathname = eal_runtime_config_path();
if (internal_config.no_shconf)
return 0;
if (mem_cfg_fd < 0){
mem_cfg_fd = open(pathname, O_RDWR);
if (mem_cfg_fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open '%s' for rte_mem_config\n",
pathname);
return -1;
}
}
/* map it as read-only first */
mem_config = (struct rte_mem_config *) mmap(NULL, sizeof(*mem_config),
PROT_READ, MAP_SHARED, mem_cfg_fd, 0);
if (mem_config == MAP_FAILED) {
close(mem_cfg_fd);
mem_cfg_fd = -1;
RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config! error %i (%s)\n",
errno, strerror(errno));
return -1;
}
rte_config.mem_config = mem_config;
return 0;
}
/* reattach the shared config at exact memory location primary process has it */
static int
rte_eal_config_reattach(void)
{
struct rte_mem_config *mem_config;
void *rte_mem_cfg_addr;
if (internal_config.no_shconf)
return 0;
/* save the address primary process has mapped shared config to */
rte_mem_cfg_addr = (void *) (uintptr_t) rte_config.mem_config->mem_cfg_addr;
/* unmap original config */
munmap(rte_config.mem_config, sizeof(struct rte_mem_config));
/* remap the config at proper address */
mem_config = (struct rte_mem_config *) mmap(rte_mem_cfg_addr,
sizeof(*mem_config), PROT_READ | PROT_WRITE, MAP_SHARED,
mem_cfg_fd, 0);
close(mem_cfg_fd);
mem_cfg_fd = -1;
if (mem_config == MAP_FAILED || mem_config != rte_mem_cfg_addr) {
if (mem_config != MAP_FAILED) {
/* errno is stale, don't use */
RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config at [%p], got [%p]"
" - please use '--" OPT_BASE_VIRTADDR
"' option\n", rte_mem_cfg_addr, mem_config);
munmap(mem_config, sizeof(struct rte_mem_config));
return -1;
}
RTE_LOG(ERR, EAL, "Cannot mmap memory for rte_config! error %i (%s)\n",
errno, strerror(errno));
return -1;
}
rte_config.mem_config = mem_config;
return 0;
}
/* Detect if we are a primary or a secondary process */
enum rte_proc_type_t
eal_proc_type_detect(void)
{
enum rte_proc_type_t ptype = RTE_PROC_PRIMARY;
const char *pathname = eal_runtime_config_path();
/* if there no shared config, there can be no secondary processes */
if (!internal_config.no_shconf) {
/* if we can open the file but not get a write-lock we are a
* secondary process. NOTE: if we get a file handle back, we
* keep that open and don't close it to prevent a race condition
* between multiple opens.
*/
if (((mem_cfg_fd = open(pathname, O_RDWR)) >= 0) &&
(fcntl(mem_cfg_fd, F_SETLK, &wr_lock) < 0))
ptype = RTE_PROC_SECONDARY;
}
RTE_LOG(INFO, EAL, "Auto-detected process type: %s\n",
ptype == RTE_PROC_PRIMARY ? "PRIMARY" : "SECONDARY");
return ptype;
}
/* Sets up rte_config structure with the pointer to shared memory config.*/
static int
rte_config_init(void)
{
rte_config.process_type = internal_config.process_type;
switch (rte_config.process_type){
case RTE_PROC_PRIMARY:
if (rte_eal_config_create() < 0)
return -1;
eal_mcfg_update_from_internal();
break;
case RTE_PROC_SECONDARY:
if (rte_eal_config_attach() < 0)
return -1;
eal_mcfg_wait_complete();
if (eal_mcfg_check_version() < 0) {
RTE_LOG(ERR, EAL, "Primary and secondary process DPDK version mismatch\n");
return -1;
}
if (rte_eal_config_reattach() < 0)
return -1;
eal_mcfg_update_internal();
break;
case RTE_PROC_AUTO:
case RTE_PROC_INVALID:
RTE_LOG(ERR, EAL, "Invalid process type %d\n",
rte_config.process_type);
return -1;
}
return 0;
}
/* Unlocks hugepage directories that were locked by eal_hugepage_info_init */
static void
eal_hugedirs_unlock(void)
{
int i;
for (i = 0; i < MAX_HUGEPAGE_SIZES; i++)
{
/* skip uninitialized */
if (internal_config.hugepage_info[i].lock_descriptor < 0)
continue;
/* unlock hugepage file */
flock(internal_config.hugepage_info[i].lock_descriptor, LOCK_UN);
close(internal_config.hugepage_info[i].lock_descriptor);
/* reset the field */
internal_config.hugepage_info[i].lock_descriptor = -1;
}
}
/* display usage */
static void
eal_usage(const char *prgname)
{
printf("\nUsage: %s ", prgname);
eal_common_usage();
printf("EAL Linux options:\n"
" --"OPT_SOCKET_MEM" Memory to allocate on sockets (comma separated values)\n"
" --"OPT_SOCKET_LIMIT" Limit memory allocation on sockets (comma separated values)\n"
" --"OPT_HUGE_DIR" Directory where hugetlbfs is mounted\n"
" --"OPT_FILE_PREFIX" Prefix for hugepage filenames\n"
" --"OPT_CREATE_UIO_DEV" Create /dev/uioX (usually done by hotplug)\n"
" --"OPT_VFIO_INTR" Interrupt mode for VFIO (legacy|msi|msix)\n"
" --"OPT_LEGACY_MEM" Legacy memory mode (no dynamic allocation, contiguous segments)\n"
" --"OPT_SINGLE_FILE_SEGMENTS" Put all hugepage memory in single files\n"
" --"OPT_MATCH_ALLOCATIONS" Free hugepages exactly as allocated\n"
"\n");
/* Allow the application to print its usage message too if hook is set */
if ( rte_application_usage_hook ) {
printf("===== Application Usage =====\n\n");
rte_application_usage_hook(prgname);
}
}
/* Set a per-application usage message */
rte_usage_hook_t
rte_set_application_usage_hook( rte_usage_hook_t usage_func )
{
rte_usage_hook_t old_func;
/* Will be NULL on the first call to denote the last usage routine. */
old_func = rte_application_usage_hook;
rte_application_usage_hook = usage_func;
return old_func;
}
static int
eal_parse_socket_arg(char *strval, volatile uint64_t *socket_arg)
{
char * arg[RTE_MAX_NUMA_NODES];
char *end;
int arg_num, i, len;
uint64_t total_mem = 0;
len = strnlen(strval, SOCKET_MEM_STRLEN);
if (len == SOCKET_MEM_STRLEN) {
RTE_LOG(ERR, EAL, "--socket-mem is too long\n");
return -1;
}
/* all other error cases will be caught later */
if (!isdigit(strval[len-1]))
return -1;
/* split the optarg into separate socket values */
arg_num = rte_strsplit(strval, len,
arg, RTE_MAX_NUMA_NODES, ',');
/* if split failed, or 0 arguments */
if (arg_num <= 0)
return -1;
/* parse each defined socket option */
errno = 0;
for (i = 0; i < arg_num; i++) {
uint64_t val;
end = NULL;
val = strtoull(arg[i], &end, 10);
/* check for invalid input */
if ((errno != 0) ||
(arg[i][0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
val <<= 20;
total_mem += val;
socket_arg[i] = val;
}
return 0;
}
static int
eal_parse_vfio_intr(const char *mode)
{
unsigned i;
static struct {
const char *name;
enum rte_intr_mode value;
} map[] = {
{ "legacy", RTE_INTR_MODE_LEGACY },
{ "msi", RTE_INTR_MODE_MSI },
{ "msix", RTE_INTR_MODE_MSIX },
};
for (i = 0; i < RTE_DIM(map); i++) {
if (!strcmp(mode, map[i].name)) {
internal_config.vfio_intr_mode = map[i].value;
return 0;
}
}
return -1;
}
/* Parse the arguments for --log-level only */
static void
eal_log_level_parse(int argc, char **argv)
{
int opt;
char **argvopt;
int option_index;
const int old_optind = optind;
const int old_optopt = optopt;
char * const old_optarg = optarg;
argvopt = argv;
optind = 1;
while ((opt = getopt_long(argc, argvopt, eal_short_options,
eal_long_options, &option_index)) != EOF) {
int ret;
/* getopt is not happy, stop right now */
if (opt == '?')
break;
ret = (opt == OPT_LOG_LEVEL_NUM) ?
eal_parse_common_option(opt, optarg, &internal_config) : 0;
/* common parser is not happy */
if (ret < 0)
break;
}
/* restore getopt lib */
optind = old_optind;
optopt = old_optopt;
optarg = old_optarg;
}
/* Parse the argument given in the command line of the application */
static int
eal_parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
const int old_optind = optind;
const int old_optopt = optopt;
char * const old_optarg = optarg;
argvopt = argv;
optind = 1;
opterr = 0;
while ((opt = getopt_long(argc, argvopt, eal_short_options,
eal_long_options, &option_index)) != EOF) {
/*
* getopt didn't recognise the option, lets parse the
* registered options to see if the flag is valid
*/
if (opt == '?') {
ret = rte_option_parse(argv[optind-1]);
if (ret == 0)
continue;
eal_usage(prgname);
ret = -1;
goto out;
}
ret = eal_parse_common_option(opt, optarg, &internal_config);
/* common parser is not happy */
if (ret < 0) {
eal_usage(prgname);
ret = -1;
goto out;
}
/* common parser handled this option */
if (ret == 0)
continue;
switch (opt) {
case 'h':
eal_usage(prgname);
exit(EXIT_SUCCESS);
case OPT_HUGE_DIR_NUM:
{
char *hdir = strdup(optarg);
if (hdir == NULL)
RTE_LOG(ERR, EAL, "Could not store hugepage directory\n");
else {
/* free old hugepage dir */
if (internal_config.hugepage_dir != NULL)
free(internal_config.hugepage_dir);
internal_config.hugepage_dir = hdir;
}
break;
}
case OPT_FILE_PREFIX_NUM:
{
char *prefix = strdup(optarg);
if (prefix == NULL)
RTE_LOG(ERR, EAL, "Could not store file prefix\n");
else {
/* free old prefix */
if (internal_config.hugefile_prefix != NULL)
free(internal_config.hugefile_prefix);
internal_config.hugefile_prefix = prefix;
}
break;
}
case OPT_SOCKET_MEM_NUM:
if (eal_parse_socket_arg(optarg,
internal_config.socket_mem) < 0) {
RTE_LOG(ERR, EAL, "invalid parameters for --"
OPT_SOCKET_MEM "\n");
eal_usage(prgname);
ret = -1;
goto out;
}
internal_config.force_sockets = 1;
break;
case OPT_SOCKET_LIMIT_NUM:
if (eal_parse_socket_arg(optarg,
internal_config.socket_limit) < 0) {
RTE_LOG(ERR, EAL, "invalid parameters for --"
OPT_SOCKET_LIMIT "\n");
eal_usage(prgname);
ret = -1;
goto out;
}
internal_config.force_socket_limits = 1;
break;
case OPT_VFIO_INTR_NUM:
if (eal_parse_vfio_intr(optarg) < 0) {
RTE_LOG(ERR, EAL, "invalid parameters for --"
OPT_VFIO_INTR "\n");
eal_usage(prgname);
ret = -1;
goto out;
}
break;
case OPT_CREATE_UIO_DEV_NUM:
internal_config.create_uio_dev = 1;
break;
case OPT_MBUF_POOL_OPS_NAME_NUM:
{
char *ops_name = strdup(optarg);
if (ops_name == NULL)
RTE_LOG(ERR, EAL, "Could not store mbuf pool ops name\n");
else {
/* free old ops name */
if (internal_config.user_mbuf_pool_ops_name !=
NULL)
free(internal_config.user_mbuf_pool_ops_name);
internal_config.user_mbuf_pool_ops_name =
ops_name;
}
break;
}
case OPT_MATCH_ALLOCATIONS_NUM:
internal_config.match_allocations = 1;
break;
default:
if (opt < OPT_LONG_MIN_NUM && isprint(opt)) {
RTE_LOG(ERR, EAL, "Option %c is not supported "
"on Linux\n", opt);
} else if (opt >= OPT_LONG_MIN_NUM &&
opt < OPT_LONG_MAX_NUM) {
RTE_LOG(ERR, EAL, "Option %s is not supported "
"on Linux\n",
eal_long_options[option_index].name);
} else {
RTE_LOG(ERR, EAL, "Option %d is not supported "
"on Linux\n", opt);
}
eal_usage(prgname);
ret = -1;
goto out;
}
}
/* create runtime data directory */
if (internal_config.no_shconf == 0 &&
eal_create_runtime_dir() < 0) {
RTE_LOG(ERR, EAL, "Cannot create runtime directory\n");
ret = -1;
goto out;
}
if (eal_adjust_config(&internal_config) != 0) {
ret = -1;
goto out;
}
/* sanity checks */
if (eal_check_common_options(&internal_config) != 0) {
eal_usage(prgname);
ret = -1;
goto out;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
out:
/* restore getopt lib */
optind = old_optind;
optopt = old_optopt;
optarg = old_optarg;
return ret;
}
static int
check_socket(const struct rte_memseg_list *msl, void *arg)
{
int *socket_id = arg;
if (msl->external)
return 0;
return *socket_id == msl->socket_id;
}
static void
eal_check_mem_on_local_socket(void)
{
int socket_id;
socket_id = rte_lcore_to_socket_id(rte_config.master_lcore);
if (rte_memseg_list_walk(check_socket, &socket_id) == 0)
RTE_LOG(WARNING, EAL, "WARNING: Master core has no memory on local socket!\n");
}
static int
sync_func(__attribute__((unused)) void *arg)
{
return 0;
}
/*
* Request iopl privilege for all RPL, returns 0 on success
* iopl() call is mostly for the i386 architecture. For other architectures,
* return -1 to indicate IO privilege can't be changed in this way.
*/
int
rte_eal_iopl_init(void)
{
#if defined(RTE_ARCH_X86)
if (iopl(3) != 0)
return -1;
#endif
return 0;
}
#ifdef VFIO_PRESENT
static int rte_eal_vfio_setup(void)
{
if (rte_vfio_enable("vfio"))
return -1;
return 0;
}
#endif
static void rte_eal_init_alert(const char *msg)
{
fprintf(stderr, "EAL: FATAL: %s\n", msg);
RTE_LOG(ERR, EAL, "%s\n", msg);
}
/*
* On Linux 3.6+, even if VFIO is not loaded, whenever IOMMU is enabled in the
* BIOS and in the kernel, /sys/kernel/iommu_groups path will contain kernel
* IOMMU groups. If IOMMU is not enabled, that path would be empty.
* Therefore, checking if the path is empty will tell us if IOMMU is enabled.
*/
static bool
is_iommu_enabled(void)
{
DIR *dir = opendir(KERNEL_IOMMU_GROUPS_PATH);
struct dirent *d;
int n = 0;
/* if directory doesn't exist, assume IOMMU is not enabled */
if (dir == NULL)
return false;
while ((d = readdir(dir)) != NULL) {
/* skip dot and dot-dot */
if (++n > 2)
break;
}
closedir(dir);
return n > 2;
}
/* Launch threads, called at application init(). */
int
rte_eal_init(int argc, char **argv)
{
int i, fctret, ret;
pthread_t thread_id;
static rte_atomic32_t run_once = RTE_ATOMIC32_INIT(0);
const char *p;
static char logid[PATH_MAX];
char cpuset[RTE_CPU_AFFINITY_STR_LEN];
char thread_name[RTE_MAX_THREAD_NAME_LEN];
bool phys_addrs;
/* checks if the machine is adequate */
if (!rte_cpu_is_supported()) {
rte_eal_init_alert("unsupported cpu type.");
rte_errno = ENOTSUP;
return -1;
}
if (!rte_atomic32_test_and_set(&run_once)) {
rte_eal_init_alert("already called initialization.");
rte_errno = EALREADY;
return -1;
}
p = strrchr(argv[0], '/');
strlcpy(logid, p ? p + 1 : argv[0], sizeof(logid));
thread_id = pthread_self();
eal_reset_internal_config(&internal_config);
/* set log level as early as possible */
eal_log_level_parse(argc, argv);
if (rte_eal_cpu_init() < 0) {
rte_eal_init_alert("Cannot detect lcores.");
rte_errno = ENOTSUP;
return -1;
}
fctret = eal_parse_args(argc, argv);
if (fctret < 0) {
rte_eal_init_alert("Invalid 'command line' arguments.");
rte_errno = EINVAL;
rte_atomic32_clear(&run_once);
return -1;
}
if (eal_plugins_init() < 0) {
rte_eal_init_alert("Cannot init plugins");
rte_errno = EINVAL;
rte_atomic32_clear(&run_once);
return -1;
}
if (eal_option_device_parse()) {
rte_errno = ENODEV;
rte_atomic32_clear(&run_once);
return -1;
}
if (rte_config_init() < 0) {
rte_eal_init_alert("Cannot init config");
return -1;
}
if (rte_eal_intr_init() < 0) {
rte_eal_init_alert("Cannot init interrupt-handling thread");
return -1;
}
if (rte_eal_alarm_init() < 0) {
rte_eal_init_alert("Cannot init alarm");
/* rte_eal_alarm_init sets rte_errno on failure. */
return -1;
}
/* Put mp channel init before bus scan so that we can init the vdev
* bus through mp channel in the secondary process before the bus scan.
*/
if (rte_mp_channel_init() < 0 && rte_errno != ENOTSUP) {
rte_eal_init_alert("failed to init mp channel");
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
rte_errno = EFAULT;
return -1;
}
}
/* register multi-process action callbacks for hotplug */
if (eal_mp_dev_hotplug_init() < 0) {
rte_eal_init_alert("failed to register mp callback for hotplug");
return -1;
}
if (rte_bus_scan()) {
rte_eal_init_alert("Cannot scan the buses for devices");
rte_errno = ENODEV;
rte_atomic32_clear(&run_once);
return -1;
}
phys_addrs = rte_eal_using_phys_addrs() != 0;
/* if no EAL option "--iova-mode=<pa|va>", use bus IOVA scheme */
if (internal_config.iova_mode == RTE_IOVA_DC) {
/* autodetect the IOVA mapping mode */
enum rte_iova_mode iova_mode = rte_bus_get_iommu_class();
if (iova_mode == RTE_IOVA_DC) {
RTE_LOG(DEBUG, EAL, "Buses did not request a specific IOVA mode.\n");
if (!phys_addrs) {
/* if we have no access to physical addresses,
* pick IOVA as VA mode.
*/
iova_mode = RTE_IOVA_VA;
RTE_LOG(DEBUG, EAL, "Physical addresses are unavailable, selecting IOVA as VA mode.\n");
#if defined(RTE_LIBRTE_KNI) && LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)
} else if (rte_eal_check_module("rte_kni") == 1) {
iova_mode = RTE_IOVA_PA;
RTE_LOG(DEBUG, EAL, "KNI is loaded, selecting IOVA as PA mode for better KNI perfomance.\n");
#endif
} else if (is_iommu_enabled()) {
/* we have an IOMMU, pick IOVA as VA mode */
iova_mode = RTE_IOVA_VA;
RTE_LOG(DEBUG, EAL, "IOMMU is available, selecting IOVA as VA mode.\n");
} else {
/* physical addresses available, and no IOMMU
* found, so pick IOVA as PA.
*/
iova_mode = RTE_IOVA_PA;
RTE_LOG(DEBUG, EAL, "IOMMU is not available, selecting IOVA as PA mode.\n");
}
}
#if defined(RTE_LIBRTE_KNI) && LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
/* Workaround for KNI which requires physical address to work
* in kernels < 4.10
*/
if (iova_mode == RTE_IOVA_VA &&
rte_eal_check_module("rte_kni") == 1) {
if (phys_addrs) {
iova_mode = RTE_IOVA_PA;
RTE_LOG(WARNING, EAL, "Forcing IOVA as 'PA' because KNI module is loaded\n");
} else {
RTE_LOG(DEBUG, EAL, "KNI can not work since physical addresses are unavailable\n");
}
}
#endif
rte_eal_get_configuration()->iova_mode = iova_mode;
} else {
rte_eal_get_configuration()->iova_mode =
internal_config.iova_mode;
}
if (rte_eal_iova_mode() == RTE_IOVA_PA && !phys_addrs) {
rte_eal_init_alert("Cannot use IOVA as 'PA' since physical addresses are not available");
rte_errno = EINVAL;
return -1;
}
RTE_LOG(INFO, EAL, "Selected IOVA mode '%s'\n",
rte_eal_iova_mode() == RTE_IOVA_PA ? "PA" : "VA");
if (internal_config.no_hugetlbfs == 0) {
/* rte_config isn't initialized yet */
ret = internal_config.process_type == RTE_PROC_PRIMARY ?
eal_hugepage_info_init() :
eal_hugepage_info_read();
if (ret < 0) {
rte_eal_init_alert("Cannot get hugepage information.");
rte_errno = EACCES;
rte_atomic32_clear(&run_once);
return -1;
}
}
if (internal_config.memory == 0 && internal_config.force_sockets == 0) {
if (internal_config.no_hugetlbfs)
internal_config.memory = MEMSIZE_IF_NO_HUGE_PAGE;
}
if (internal_config.vmware_tsc_map == 1) {
#ifdef RTE_LIBRTE_EAL_VMWARE_TSC_MAP_SUPPORT
rte_cycles_vmware_tsc_map = 1;
RTE_LOG (DEBUG, EAL, "Using VMWARE TSC MAP, "
"you must have monitor_control.pseudo_perfctr = TRUE\n");
#else
RTE_LOG (WARNING, EAL, "Ignoring --vmware-tsc-map because "
"RTE_LIBRTE_EAL_VMWARE_TSC_MAP_SUPPORT is not set\n");
#endif
}
if (rte_eal_log_init(logid, internal_config.syslog_facility) < 0) {
rte_eal_init_alert("Cannot init logging.");
rte_errno = ENOMEM;
rte_atomic32_clear(&run_once);
return -1;
}
#ifdef VFIO_PRESENT
if (rte_eal_vfio_setup() < 0) {
rte_eal_init_alert("Cannot init VFIO");
rte_errno = EAGAIN;
rte_atomic32_clear(&run_once);
return -1;
}
#endif
/* in secondary processes, memory init may allocate additional fbarrays
* not present in primary processes, so to avoid any potential issues,
* initialize memzones first.
*/
if (rte_eal_memzone_init() < 0) {
rte_eal_init_alert("Cannot init memzone");
rte_errno = ENODEV;
return -1;
}
if (rte_eal_memory_init() < 0) {
rte_eal_init_alert("Cannot init memory");
rte_errno = ENOMEM;
return -1;
}
/* the directories are locked during eal_hugepage_info_init */
eal_hugedirs_unlock();
if (rte_eal_malloc_heap_init() < 0) {
rte_eal_init_alert("Cannot init malloc heap");
rte_errno = ENODEV;
return -1;
}
if (rte_eal_tailqs_init() < 0) {
rte_eal_init_alert("Cannot init tail queues for objects");
rte_errno = EFAULT;
return -1;
}
if (rte_eal_timer_init() < 0) {
rte_eal_init_alert("Cannot init HPET or TSC timers");
rte_errno = ENOTSUP;
return -1;
}
eal_check_mem_on_local_socket();
eal_thread_init_master(rte_config.master_lcore);
ret = eal_thread_dump_affinity(cpuset, sizeof(cpuset));
RTE_LOG(DEBUG, EAL, "Master lcore %u is ready (tid=%zx;cpuset=[%s%s])\n",
rte_config.master_lcore, (uintptr_t)thread_id, cpuset,
ret == 0 ? "" : "...");
RTE_LCORE_FOREACH_SLAVE(i) {
/*
* create communication pipes between master thread
* and children
*/
if (pipe(lcore_config[i].pipe_master2slave) < 0)
rte_panic("Cannot create pipe\n");
if (pipe(lcore_config[i].pipe_slave2master) < 0)
rte_panic("Cannot create pipe\n");
lcore_config[i].state = WAIT;
/* create a thread for each lcore */
ret = pthread_create(&lcore_config[i].thread_id, NULL,
eal_thread_loop, NULL);
if (ret != 0)
rte_panic("Cannot create thread\n");
/* Set thread_name for aid in debugging. */
snprintf(thread_name, sizeof(thread_name),
"lcore-slave-%d", i);
ret = rte_thread_setname(lcore_config[i].thread_id,
thread_name);
if (ret != 0)
RTE_LOG(DEBUG, EAL,
"Cannot set name for lcore thread\n");
}
/*
* Launch a dummy function on all slave lcores, so that master lcore
* knows they are all ready when this function returns.
*/
rte_eal_mp_remote_launch(sync_func, NULL, SKIP_MASTER);
rte_eal_mp_wait_lcore();
/* initialize services so vdevs register service during bus_probe. */
ret = rte_service_init();
if (ret) {
rte_eal_init_alert("rte_service_init() failed");
rte_errno = ENOEXEC;
return -1;
}
/* Probe all the buses and devices/drivers on them */
if (rte_bus_probe()) {
rte_eal_init_alert("Cannot probe devices");
rte_errno = ENOTSUP;
return -1;
}
#ifdef VFIO_PRESENT
/* Register mp action after probe() so that we got enough info */
if (rte_vfio_is_enabled("vfio") && vfio_mp_sync_setup() < 0)
return -1;
#endif
/* initialize default service/lcore mappings and start running. Ignore
* -ENOTSUP, as it indicates no service coremask passed to EAL.
*/
ret = rte_service_start_with_defaults();
if (ret < 0 && ret != -ENOTSUP) {
rte_errno = ENOEXEC;
return -1;
}
/*
* Clean up unused files in runtime directory. We do this at the end of
* init and not at the beginning because we want to clean stuff up
* whether we are primary or secondary process, but we cannot remove
* primary process' files because secondary should be able to run even
* if primary process is dead.
*
* In no_shconf mode, no runtime directory is created in the first
* place, so no cleanup needed.
*/
if (!internal_config.no_shconf && eal_clean_runtime_dir() < 0) {
rte_eal_init_alert("Cannot clear runtime directory\n");
return -1;
}
eal_mcfg_complete();
/* Call each registered callback, if enabled */
rte_option_init();
return fctret;
}
static int
mark_freeable(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg __rte_unused)
{
/* ms is const, so find this memseg */
struct rte_memseg *found;
if (msl->external)
return 0;
found = rte_mem_virt2memseg(ms->addr, msl);
found->flags &= ~RTE_MEMSEG_FLAG_DO_NOT_FREE;
return 0;
}
int
rte_eal_cleanup(void)
{
/* if we're in a primary process, we need to mark hugepages as freeable
* so that finalization can release them back to the system.
*/
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
rte_memseg_walk(mark_freeable, NULL);
rte_service_finalize();
rte_mp_channel_cleanup();
eal_cleanup_config(&internal_config);
return 0;
}
enum rte_proc_type_t
rte_eal_process_type(void)
{
return rte_config.process_type;
}
int rte_eal_has_hugepages(void)
{
return ! internal_config.no_hugetlbfs;
}
int rte_eal_has_pci(void)
{
return !internal_config.no_pci;
}
int rte_eal_create_uio_dev(void)
{
return internal_config.create_uio_dev;
}
enum rte_intr_mode
rte_eal_vfio_intr_mode(void)
{
return internal_config.vfio_intr_mode;
}
int
rte_eal_check_module(const char *module_name)
{
char sysfs_mod_name[PATH_MAX];
struct stat st;
int n;
if (NULL == module_name)
return -1;
/* Check if there is sysfs mounted */
if (stat("/sys/module", &st) != 0) {
RTE_LOG(DEBUG, EAL, "sysfs is not mounted! error %i (%s)\n",
errno, strerror(errno));
return -1;
}
/* A module might be built-in, therefore try sysfs */
n = snprintf(sysfs_mod_name, PATH_MAX, "/sys/module/%s", module_name);
if (n < 0 || n > PATH_MAX) {
RTE_LOG(DEBUG, EAL, "Could not format module path\n");
return -1;
}
if (stat(sysfs_mod_name, &st) != 0) {
RTE_LOG(DEBUG, EAL, "Module %s not found! error %i (%s)\n",
sysfs_mod_name, errno, strerror(errno));
return 0;
}
/* Module has been found */
return 1;
}