dpdk-fm10k/app/test/test_distributor_perf.c
Bruce Richardson a9de470cc7 test: move to app directory
Since all other apps have been moved to the "app" folder, the autotest app
remains alone in the test folder. Rather than having an entire top-level
folder for this, we can move it back to where it all started in early
versions of DPDK - the "app/" folder.

This move has a couple of advantages:
* This reduces clutter at the top level of the project, due to one less
  folder.
* It eliminates the separate build task necessary for building the
  autotests using make "make test-build" which means that developers are
  less likely to miss something in their own compilation tests
* It re-aligns the final location of the test binary in the app folder when
  building with make with it's location in the source tree.

For meson builds, the autotest app is different from the other apps in that
it needs a series of different test cases defined for it for use by "meson
test". Therefore, it does not get built as part of the main loop in the
app folder, but gets built separately at the end.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2019-02-26 15:29:27 +01:00

269 lines
6.6 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include "test.h"
#include <unistd.h>
#include <string.h>
#include <rte_mempool.h>
#include <rte_cycles.h>
#include <rte_common.h>
#include <rte_mbuf.h>
#include <rte_distributor.h>
#include <rte_pause.h>
#define ITER_POWER_CL 25 /* log 2 of how many iterations for Cache Line test */
#define ITER_POWER 21 /* log 2 of how many iterations we do when timing. */
#define BURST 64
#define BIG_BATCH 1024
/* static vars - zero initialized by default */
static volatile int quit;
static volatile unsigned worker_idx;
struct worker_stats {
volatile unsigned handled_packets;
} __rte_cache_aligned;
struct worker_stats worker_stats[RTE_MAX_LCORE];
/*
* worker thread used for testing the time to do a round-trip of a cache
* line between two cores and back again
*/
static int
flip_bit(volatile uint64_t *arg)
{
uint64_t old_val = 0;
while (old_val != 2) {
while (!*arg)
rte_pause();
old_val = *arg;
*arg = 0;
}
return 0;
}
/*
* test case to time the number of cycles to round-trip a cache line between
* two cores and back again.
*/
static void
time_cache_line_switch(void)
{
/* allocate a full cache line for data, we use only first byte of it */
uint64_t data[RTE_CACHE_LINE_SIZE*3 / sizeof(uint64_t)];
unsigned i, slaveid = rte_get_next_lcore(rte_lcore_id(), 0, 0);
volatile uint64_t *pdata = &data[0];
*pdata = 1;
rte_eal_remote_launch((lcore_function_t *)flip_bit, &data[0], slaveid);
while (*pdata)
rte_pause();
const uint64_t start_time = rte_rdtsc();
for (i = 0; i < (1 << ITER_POWER_CL); i++) {
while (*pdata)
rte_pause();
*pdata = 1;
}
const uint64_t end_time = rte_rdtsc();
while (*pdata)
rte_pause();
*pdata = 2;
rte_eal_wait_lcore(slaveid);
printf("==== Cache line switch test ===\n");
printf("Time for %u iterations = %"PRIu64" ticks\n", (1<<ITER_POWER_CL),
end_time-start_time);
printf("Ticks per iteration = %"PRIu64"\n\n",
(end_time-start_time) >> ITER_POWER_CL);
}
/*
* returns the total count of the number of packets handled by the worker
* functions given below.
*/
static unsigned
total_packet_count(void)
{
unsigned i, count = 0;
for (i = 0; i < worker_idx; i++)
count += worker_stats[i].handled_packets;
return count;
}
/* resets the packet counts for a new test */
static void
clear_packet_count(void)
{
memset(&worker_stats, 0, sizeof(worker_stats));
}
/*
* This is the basic worker function for performance tests.
* it does nothing but return packets and count them.
*/
static int
handle_work(void *arg)
{
struct rte_distributor *d = arg;
unsigned int count = 0;
unsigned int num = 0;
int i;
unsigned int id = __sync_fetch_and_add(&worker_idx, 1);
struct rte_mbuf *buf[8] __rte_cache_aligned;
for (i = 0; i < 8; i++)
buf[i] = NULL;
num = rte_distributor_get_pkt(d, id, buf, buf, num);
while (!quit) {
worker_stats[id].handled_packets += num;
count += num;
num = rte_distributor_get_pkt(d, id, buf, buf, num);
}
worker_stats[id].handled_packets += num;
count += num;
rte_distributor_return_pkt(d, id, buf, num);
return 0;
}
/*
* This basic performance test just repeatedly sends in 32 packets at a time
* to the distributor and verifies at the end that we got them all in the worker
* threads and finally how long per packet the processing took.
*/
static inline int
perf_test(struct rte_distributor *d, struct rte_mempool *p)
{
unsigned int i;
uint64_t start, end;
struct rte_mbuf *bufs[BURST];
clear_packet_count();
if (rte_mempool_get_bulk(p, (void *)bufs, BURST) != 0) {
printf("Error getting mbufs from pool\n");
return -1;
}
/* ensure we have different hash value for each pkt */
for (i = 0; i < BURST; i++)
bufs[i]->hash.usr = i;
start = rte_rdtsc();
for (i = 0; i < (1<<ITER_POWER); i++)
rte_distributor_process(d, bufs, BURST);
end = rte_rdtsc();
do {
usleep(100);
rte_distributor_process(d, NULL, 0);
} while (total_packet_count() < (BURST << ITER_POWER));
rte_distributor_clear_returns(d);
printf("Time per burst: %"PRIu64"\n", (end - start) >> ITER_POWER);
printf("Time per packet: %"PRIu64"\n\n",
((end - start) >> ITER_POWER)/BURST);
rte_mempool_put_bulk(p, (void *)bufs, BURST);
for (i = 0; i < rte_lcore_count() - 1; i++)
printf("Worker %u handled %u packets\n", i,
worker_stats[i].handled_packets);
printf("Total packets: %u (%x)\n", total_packet_count(),
total_packet_count());
printf("=== Perf test done ===\n\n");
return 0;
}
/* Useful function which ensures that all worker functions terminate */
static void
quit_workers(struct rte_distributor *d, struct rte_mempool *p)
{
const unsigned int num_workers = rte_lcore_count() - 1;
unsigned int i;
struct rte_mbuf *bufs[RTE_MAX_LCORE];
rte_mempool_get_bulk(p, (void *)bufs, num_workers);
quit = 1;
for (i = 0; i < num_workers; i++)
bufs[i]->hash.usr = i << 1;
rte_distributor_process(d, bufs, num_workers);
rte_mempool_put_bulk(p, (void *)bufs, num_workers);
rte_distributor_process(d, NULL, 0);
rte_eal_mp_wait_lcore();
quit = 0;
worker_idx = 0;
}
static int
test_distributor_perf(void)
{
static struct rte_distributor *ds;
static struct rte_distributor *db;
static struct rte_mempool *p;
if (rte_lcore_count() < 2) {
printf("ERROR: not enough cores to test distributor\n");
return -1;
}
/* first time how long it takes to round-trip a cache line */
time_cache_line_switch();
if (ds == NULL) {
ds = rte_distributor_create("Test_perf", rte_socket_id(),
rte_lcore_count() - 1,
RTE_DIST_ALG_SINGLE);
if (ds == NULL) {
printf("Error creating distributor\n");
return -1;
}
} else {
rte_distributor_clear_returns(ds);
}
if (db == NULL) {
db = rte_distributor_create("Test_burst", rte_socket_id(),
rte_lcore_count() - 1,
RTE_DIST_ALG_BURST);
if (db == NULL) {
printf("Error creating burst distributor\n");
return -1;
}
} else {
rte_distributor_clear_returns(db);
}
const unsigned nb_bufs = (511 * rte_lcore_count()) < BIG_BATCH ?
(BIG_BATCH * 2) - 1 : (511 * rte_lcore_count());
if (p == NULL) {
p = rte_pktmbuf_pool_create("DPT_MBUF_POOL", nb_bufs, BURST,
0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (p == NULL) {
printf("Error creating mempool\n");
return -1;
}
}
printf("=== Performance test of distributor (single mode) ===\n");
rte_eal_mp_remote_launch(handle_work, ds, SKIP_MASTER);
if (perf_test(ds, p) < 0)
return -1;
quit_workers(ds, p);
printf("=== Performance test of distributor (burst mode) ===\n");
rte_eal_mp_remote_launch(handle_work, db, SKIP_MASTER);
if (perf_test(db, p) < 0)
return -1;
quit_workers(db, p);
return 0;
}
REGISTER_TEST_COMMAND(distributor_perf_autotest, test_distributor_perf);