dpdk-fm10k/app/test-pmd/csumonly.c
Thomas Monjalon ef5baf3486 replace packed attributes
There is a common macro __rte_packed for packing structs,
which is now used where appropriate for consistency.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
2020-04-16 18:16:46 +02:00

1112 lines
30 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2014 6WIND S.A.
*/
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_vxlan.h>
#include <rte_sctp.h>
#include <rte_gtp.h>
#include <rte_prefetch.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include <rte_gro.h>
#include <rte_gso.h>
#include "testpmd.h"
#define IP_DEFTTL 64 /* from RFC 1340. */
#define GRE_CHECKSUM_PRESENT 0x8000
#define GRE_KEY_PRESENT 0x2000
#define GRE_SEQUENCE_PRESENT 0x1000
#define GRE_EXT_LEN 4
#define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
GRE_SEQUENCE_PRESENT)
/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
#else
#define _htons(x) (x)
#endif
uint16_t vxlan_gpe_udp_port = 4790;
/* structure that caches offload info for the current packet */
struct testpmd_offload_info {
uint16_t ethertype;
uint8_t gso_enable;
uint16_t l2_len;
uint16_t l3_len;
uint16_t l4_len;
uint8_t l4_proto;
uint8_t is_tunnel;
uint16_t outer_ethertype;
uint16_t outer_l2_len;
uint16_t outer_l3_len;
uint8_t outer_l4_proto;
uint16_t tso_segsz;
uint16_t tunnel_tso_segsz;
uint32_t pkt_len;
};
/* simplified GRE header */
struct simple_gre_hdr {
uint16_t flags;
uint16_t proto;
} __rte_packed;
static uint16_t
get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
{
if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
}
/* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
static void
parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
{
struct rte_tcp_hdr *tcp_hdr;
info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
info->l4_proto = ipv4_hdr->next_proto_id;
/* only fill l4_len for TCP, it's useful for TSO */
if (info->l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct rte_tcp_hdr *)
((char *)ipv4_hdr + info->l3_len);
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
} else if (info->l4_proto == IPPROTO_UDP)
info->l4_len = sizeof(struct rte_udp_hdr);
else
info->l4_len = 0;
}
/* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
static void
parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
{
struct rte_tcp_hdr *tcp_hdr;
info->l3_len = sizeof(struct rte_ipv6_hdr);
info->l4_proto = ipv6_hdr->proto;
/* only fill l4_len for TCP, it's useful for TSO */
if (info->l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct rte_tcp_hdr *)
((char *)ipv6_hdr + info->l3_len);
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
} else if (info->l4_proto == IPPROTO_UDP)
info->l4_len = sizeof(struct rte_udp_hdr);
else
info->l4_len = 0;
}
/*
* Parse an ethernet header to fill the ethertype, l2_len, l3_len and
* ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
* header. The l4_len argument is only set in case of TCP (useful for TSO).
*/
static void
parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
info->l2_len = sizeof(struct rte_ether_hdr);
info->ethertype = eth_hdr->ether_type;
if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
struct rte_vlan_hdr *vlan_hdr = (
struct rte_vlan_hdr *)(eth_hdr + 1);
info->l2_len += sizeof(struct rte_vlan_hdr);
info->ethertype = vlan_hdr->eth_proto;
}
switch (info->ethertype) {
case _htons(RTE_ETHER_TYPE_IPV4):
ipv4_hdr = (struct rte_ipv4_hdr *)
((char *)eth_hdr + info->l2_len);
parse_ipv4(ipv4_hdr, info);
break;
case _htons(RTE_ETHER_TYPE_IPV6):
ipv6_hdr = (struct rte_ipv6_hdr *)
((char *)eth_hdr + info->l2_len);
parse_ipv6(ipv6_hdr, info);
break;
default:
info->l4_len = 0;
info->l3_len = 0;
info->l4_proto = 0;
break;
}
}
/*
* Parse a GTP protocol header.
* No optional fields and next extension header type.
*/
static void
parse_gtp(struct rte_udp_hdr *udp_hdr,
struct testpmd_offload_info *info)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_gtp_hdr *gtp_hdr;
uint8_t gtp_len = sizeof(*gtp_hdr);
uint8_t ip_ver;
/* Check udp destination port. */
if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
return;
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
info->l2_len = 0;
gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
sizeof(struct rte_udp_hdr));
/*
* Check message type. If message type is 0xff, it is
* a GTP data packet. If not, it is a GTP control packet
*/
if (gtp_hdr->msg_type == 0xff) {
ip_ver = *(uint8_t *)((char *)udp_hdr +
sizeof(struct rte_udp_hdr) +
sizeof(struct rte_gtp_hdr));
ip_ver = (ip_ver) & 0xf0;
if (ip_ver == RTE_GTP_TYPE_IPV4) {
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
gtp_len);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
parse_ipv4(ipv4_hdr, info);
} else if (ip_ver == RTE_GTP_TYPE_IPV6) {
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
gtp_len);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
parse_ipv6(ipv6_hdr, info);
}
} else {
info->ethertype = 0;
info->l4_len = 0;
info->l3_len = 0;
info->l4_proto = 0;
}
info->l2_len += RTE_ETHER_GTP_HLEN;
}
/* Parse a vxlan header */
static void
parse_vxlan(struct rte_udp_hdr *udp_hdr,
struct testpmd_offload_info *info,
uint32_t pkt_type)
{
struct rte_ether_hdr *eth_hdr;
/* check udp destination port, 4789 is the default vxlan port
* (rfc7348) or that the rx offload flag is set (i40e only
* currently) */
if (udp_hdr->dst_port != _htons(4789) &&
RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
return;
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
sizeof(struct rte_udp_hdr) +
sizeof(struct rte_vxlan_hdr));
parse_ethernet(eth_hdr, info);
info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
}
/* Parse a vxlan-gpe header */
static void
parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
struct testpmd_offload_info *info)
{
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
/* Check udp destination port. */
if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
return;
vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
sizeof(struct rte_udp_hdr));
if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
RTE_VXLAN_GPE_TYPE_IPV4) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
vxlan_gpe_len);
parse_ipv4(ipv4_hdr, info);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
info->l2_len = 0;
} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
vxlan_gpe_len);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
parse_ipv6(ipv6_hdr, info);
info->l2_len = 0;
} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
vxlan_gpe_len);
parse_ethernet(eth_hdr, info);
} else
return;
info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
}
/* Parse a gre header */
static void
parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
{
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
uint8_t gre_len = 0;
gre_len += sizeof(struct simple_gre_hdr);
if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
gre_len += GRE_EXT_LEN;
if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
gre_len += GRE_EXT_LEN;
if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
gre_len += GRE_EXT_LEN;
if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
parse_ipv4(ipv4_hdr, info);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
info->l2_len = 0;
} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
parse_ipv6(ipv6_hdr, info);
info->l2_len = 0;
} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
parse_ethernet(eth_hdr, info);
} else
return;
info->l2_len += gre_len;
}
/* Parse an encapsulated ip or ipv6 header */
static void
parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
{
struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
uint8_t ip_version;
ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
if (ip_version != 4 && ip_version != 6)
return;
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
if (ip_version == 4) {
parse_ipv4(ipv4_hdr, info);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
} else {
parse_ipv6(ipv6_hdr, info);
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
}
info->l2_len = 0;
}
/* if possible, calculate the checksum of a packet in hw or sw,
* depending on the testpmd command line configuration */
static uint64_t
process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
uint64_t tx_offloads)
{
struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
struct rte_udp_hdr *udp_hdr;
struct rte_tcp_hdr *tcp_hdr;
struct rte_sctp_hdr *sctp_hdr;
uint64_t ol_flags = 0;
uint32_t max_pkt_len, tso_segsz = 0;
/* ensure packet is large enough to require tso */
if (!info->is_tunnel) {
max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
info->tso_segsz;
if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
tso_segsz = info->tso_segsz;
} else {
max_pkt_len = info->outer_l2_len + info->outer_l3_len +
info->l2_len + info->l3_len + info->l4_len +
info->tunnel_tso_segsz;
if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
tso_segsz = info->tunnel_tso_segsz;
}
if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
ipv4_hdr = l3_hdr;
ipv4_hdr->hdr_checksum = 0;
ol_flags |= PKT_TX_IPV4;
if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
ol_flags |= PKT_TX_IP_CKSUM;
} else {
if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
ol_flags |= PKT_TX_IP_CKSUM;
else
ipv4_hdr->hdr_checksum =
rte_ipv4_cksum(ipv4_hdr);
}
} else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
ol_flags |= PKT_TX_IPV6;
else
return 0; /* packet type not supported, nothing to do */
if (info->l4_proto == IPPROTO_UDP) {
udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
/* do not recalculate udp cksum if it was 0 */
if (udp_hdr->dgram_cksum != 0) {
udp_hdr->dgram_cksum = 0;
if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
ol_flags |= PKT_TX_UDP_CKSUM;
else {
udp_hdr->dgram_cksum =
get_udptcp_checksum(l3_hdr, udp_hdr,
info->ethertype);
}
}
if (info->gso_enable)
ol_flags |= PKT_TX_UDP_SEG;
} else if (info->l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
tcp_hdr->cksum = 0;
if (tso_segsz)
ol_flags |= PKT_TX_TCP_SEG;
else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
ol_flags |= PKT_TX_TCP_CKSUM;
else {
tcp_hdr->cksum =
get_udptcp_checksum(l3_hdr, tcp_hdr,
info->ethertype);
}
if (info->gso_enable)
ol_flags |= PKT_TX_TCP_SEG;
} else if (info->l4_proto == IPPROTO_SCTP) {
sctp_hdr = (struct rte_sctp_hdr *)
((char *)l3_hdr + info->l3_len);
sctp_hdr->cksum = 0;
/* sctp payload must be a multiple of 4 to be
* offloaded */
if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
((ipv4_hdr->total_length & 0x3) == 0)) {
ol_flags |= PKT_TX_SCTP_CKSUM;
} else {
/* XXX implement CRC32c, example available in
* RFC3309 */
}
}
return ol_flags;
}
/* Calculate the checksum of outer header */
static uint64_t
process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
uint64_t tx_offloads, int tso_enabled)
{
struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
struct rte_udp_hdr *udp_hdr;
uint64_t ol_flags = 0;
if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
ipv4_hdr->hdr_checksum = 0;
ol_flags |= PKT_TX_OUTER_IPV4;
if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
ol_flags |= PKT_TX_OUTER_IP_CKSUM;
else
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
} else
ol_flags |= PKT_TX_OUTER_IPV6;
if (info->outer_l4_proto != IPPROTO_UDP)
return ol_flags;
udp_hdr = (struct rte_udp_hdr *)
((char *)outer_l3_hdr + info->outer_l3_len);
if (tso_enabled)
ol_flags |= PKT_TX_TCP_SEG;
/* Skip SW outer UDP checksum generation if HW supports it */
if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
udp_hdr->dgram_cksum
= rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
else
udp_hdr->dgram_cksum
= rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
return ol_flags;
}
/* outer UDP checksum is done in software. In the other side, for
* UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
* set to zero.
*
* If a packet will be TSOed into small packets by NIC, we cannot
* set/calculate a non-zero checksum, because it will be a wrong
* value after the packet be split into several small packets.
*/
if (tso_enabled)
udp_hdr->dgram_cksum = 0;
/* do not recalculate udp cksum if it was 0 */
if (udp_hdr->dgram_cksum != 0) {
udp_hdr->dgram_cksum = 0;
if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
udp_hdr->dgram_cksum =
rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
else
udp_hdr->dgram_cksum =
rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
}
return ol_flags;
}
/*
* Helper function.
* Performs actual copying.
* Returns number of segments in the destination mbuf on success,
* or negative error code on failure.
*/
static int
mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
uint16_t seglen[], uint8_t nb_seg)
{
uint32_t dlen, slen, tlen;
uint32_t i, len;
const struct rte_mbuf *m;
const uint8_t *src;
uint8_t *dst;
dlen = 0;
slen = 0;
tlen = 0;
dst = NULL;
src = NULL;
m = ms;
i = 0;
while (ms != NULL && i != nb_seg) {
if (slen == 0) {
slen = rte_pktmbuf_data_len(ms);
src = rte_pktmbuf_mtod(ms, const uint8_t *);
}
if (dlen == 0) {
dlen = RTE_MIN(seglen[i], slen);
md[i]->data_len = dlen;
md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
dst = rte_pktmbuf_mtod(md[i], uint8_t *);
}
len = RTE_MIN(slen, dlen);
memcpy(dst, src, len);
tlen += len;
slen -= len;
dlen -= len;
src += len;
dst += len;
if (slen == 0)
ms = ms->next;
if (dlen == 0)
i++;
}
if (ms != NULL)
return -ENOBUFS;
else if (tlen != m->pkt_len)
return -EINVAL;
md[0]->nb_segs = nb_seg;
md[0]->pkt_len = tlen;
md[0]->vlan_tci = m->vlan_tci;
md[0]->vlan_tci_outer = m->vlan_tci_outer;
md[0]->ol_flags = m->ol_flags;
md[0]->tx_offload = m->tx_offload;
return nb_seg;
}
/*
* Allocate a new mbuf with up to tx_pkt_nb_segs segments.
* Copy packet contents and offload information into the new segmented mbuf.
*/
static struct rte_mbuf *
pkt_copy_split(const struct rte_mbuf *pkt)
{
int32_t n, rc;
uint32_t i, len, nb_seg;
struct rte_mempool *mp;
uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
mp = current_fwd_lcore()->mbp;
if (tx_pkt_split == TX_PKT_SPLIT_RND)
nb_seg = random() % tx_pkt_nb_segs + 1;
else
nb_seg = tx_pkt_nb_segs;
memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
/* calculate number of segments to use and their length. */
len = 0;
for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
len += seglen[i];
md[i] = NULL;
}
n = pkt->pkt_len - len;
/* update size of the last segment to fit rest of the packet */
if (n >= 0) {
seglen[i - 1] += n;
len += n;
}
nb_seg = i;
while (i != 0) {
p = rte_pktmbuf_alloc(mp);
if (p == NULL) {
TESTPMD_LOG(ERR,
"failed to allocate %u-th of %u mbuf "
"from mempool: %s\n",
nb_seg - i, nb_seg, mp->name);
break;
}
md[--i] = p;
if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
"expected seglen: %u, "
"actual mbuf tailroom: %u\n",
mp->name, i, seglen[i],
rte_pktmbuf_tailroom(md[i]));
break;
}
}
/* all mbufs successfully allocated, do copy */
if (i == 0) {
rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
if (rc < 0)
TESTPMD_LOG(ERR,
"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
"into %u segments failed with error code: %d\n",
pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
/* figure out how many mbufs to free. */
i = RTE_MAX(rc, 0);
}
/* free unused mbufs */
for (; i != nb_seg; i++) {
rte_pktmbuf_free_seg(md[i]);
md[i] = NULL;
}
return md[0];
}
/*
* Receive a burst of packets, and for each packet:
* - parse packet, and try to recognize a supported packet type (1)
* - if it's not a supported packet type, don't touch the packet, else:
* - reprocess the checksum of all supported layers. This is done in SW
* or HW, depending on testpmd command line configuration
* - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
* segmentation offload (this implies HW TCP checksum)
* Then transmit packets on the output port.
*
* (1) Supported packets are:
* Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
* Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
* UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
* UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
* UDP|TCP|SCTP
* Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
*
* The testpmd command line for this forward engine sets the flags
* TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
* wether a checksum must be calculated in software or in hardware. The
* IP, UDP, TCP and SCTP flags always concern the inner layer. The
* OUTER_IP is only useful for tunnel packets.
*/
static void
pkt_burst_checksum_forward(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
struct rte_gso_ctx *gso_ctx;
struct rte_mbuf **tx_pkts_burst;
struct rte_port *txp;
struct rte_mbuf *m, *p;
struct rte_ether_hdr *eth_hdr;
void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
void **gro_ctx;
uint16_t gro_pkts_num;
uint8_t gro_enable;
uint16_t nb_rx;
uint16_t nb_tx;
uint16_t nb_prep;
uint16_t i;
uint64_t rx_ol_flags, tx_ol_flags;
uint64_t tx_offloads;
uint32_t retry;
uint32_t rx_bad_ip_csum;
uint32_t rx_bad_l4_csum;
uint32_t rx_bad_outer_l4_csum;
struct testpmd_offload_info info;
uint16_t nb_segments = 0;
int ret;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t start_tsc;
uint64_t end_tsc;
uint64_t core_cycles;
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
start_tsc = rte_rdtsc();
#endif
/* receive a burst of packet */
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
nb_pkt_per_burst);
if (unlikely(nb_rx == 0))
return;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
#endif
fs->rx_packets += nb_rx;
rx_bad_ip_csum = 0;
rx_bad_l4_csum = 0;
rx_bad_outer_l4_csum = 0;
gro_enable = gro_ports[fs->rx_port].enable;
txp = &ports[fs->tx_port];
tx_offloads = txp->dev_conf.txmode.offloads;
memset(&info, 0, sizeof(info));
info.tso_segsz = txp->tso_segsz;
info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
if (gso_ports[fs->tx_port].enable)
info.gso_enable = 1;
for (i = 0; i < nb_rx; i++) {
if (likely(i < nb_rx - 1))
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
void *));
m = pkts_burst[i];
info.is_tunnel = 0;
info.pkt_len = rte_pktmbuf_pkt_len(m);
tx_ol_flags = m->ol_flags &
(IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
rx_ol_flags = m->ol_flags;
/* Update the L3/L4 checksum error packet statistics */
if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
rx_bad_ip_csum += 1;
if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
rx_bad_l4_csum += 1;
if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
rx_bad_outer_l4_csum += 1;
/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
* and inner headers */
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
&eth_hdr->d_addr);
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
&eth_hdr->s_addr);
parse_ethernet(eth_hdr, &info);
l3_hdr = (char *)eth_hdr + info.l2_len;
/* check if it's a supported tunnel */
if (txp->parse_tunnel) {
if (info.l4_proto == IPPROTO_UDP) {
struct rte_udp_hdr *udp_hdr;
udp_hdr = (struct rte_udp_hdr *)
((char *)l3_hdr + info.l3_len);
parse_gtp(udp_hdr, &info);
if (info.is_tunnel) {
tx_ol_flags |= PKT_TX_TUNNEL_GTP;
goto tunnel_update;
}
parse_vxlan_gpe(udp_hdr, &info);
if (info.is_tunnel) {
tx_ol_flags |=
PKT_TX_TUNNEL_VXLAN_GPE;
goto tunnel_update;
}
parse_vxlan(udp_hdr, &info,
m->packet_type);
if (info.is_tunnel)
tx_ol_flags |=
PKT_TX_TUNNEL_VXLAN;
} else if (info.l4_proto == IPPROTO_GRE) {
struct simple_gre_hdr *gre_hdr;
gre_hdr = (struct simple_gre_hdr *)
((char *)l3_hdr + info.l3_len);
parse_gre(gre_hdr, &info);
if (info.is_tunnel)
tx_ol_flags |= PKT_TX_TUNNEL_GRE;
} else if (info.l4_proto == IPPROTO_IPIP) {
void *encap_ip_hdr;
encap_ip_hdr = (char *)l3_hdr + info.l3_len;
parse_encap_ip(encap_ip_hdr, &info);
if (info.is_tunnel)
tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
}
}
tunnel_update:
/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
if (info.is_tunnel) {
outer_l3_hdr = l3_hdr;
l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
}
/* step 2: depending on user command line configuration,
* recompute checksum either in software or flag the
* mbuf to offload the calculation to the NIC. If TSO
* is configured, prepare the mbuf for TCP segmentation. */
/* process checksums of inner headers first */
tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
tx_offloads);
/* Then process outer headers if any. Note that the software
* checksum will be wrong if one of the inner checksums is
* processed in hardware. */
if (info.is_tunnel == 1) {
tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
tx_offloads,
!!(tx_ol_flags & PKT_TX_TCP_SEG));
}
/* step 3: fill the mbuf meta data (flags and header lengths) */
m->tx_offload = 0;
if (info.is_tunnel == 1) {
if (info.tunnel_tso_segsz ||
(tx_offloads &
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
(tx_offloads &
DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
(tx_ol_flags & PKT_TX_OUTER_IPV6)) {
m->outer_l2_len = info.outer_l2_len;
m->outer_l3_len = info.outer_l3_len;
m->l2_len = info.l2_len;
m->l3_len = info.l3_len;
m->l4_len = info.l4_len;
m->tso_segsz = info.tunnel_tso_segsz;
}
else {
/* if there is a outer UDP cksum
processed in sw and the inner in hw,
the outer checksum will be wrong as
the payload will be modified by the
hardware */
m->l2_len = info.outer_l2_len +
info.outer_l3_len + info.l2_len;
m->l3_len = info.l3_len;
m->l4_len = info.l4_len;
}
} else {
/* this is only useful if an offload flag is
* set, but it does not hurt to fill it in any
* case */
m->l2_len = info.l2_len;
m->l3_len = info.l3_len;
m->l4_len = info.l4_len;
m->tso_segsz = info.tso_segsz;
}
m->ol_flags = tx_ol_flags;
/* Do split & copy for the packet. */
if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
p = pkt_copy_split(m);
if (p != NULL) {
rte_pktmbuf_free(m);
m = p;
pkts_burst[i] = m;
}
}
/* if verbose mode is enabled, dump debug info */
if (verbose_level > 0) {
char buf[256];
printf("-----------------\n");
printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
fs->rx_port, m, m->pkt_len, m->nb_segs);
/* dump rx parsed packet info */
rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
printf("rx: l2_len=%d ethertype=%x l3_len=%d "
"l4_proto=%d l4_len=%d flags=%s\n",
info.l2_len, rte_be_to_cpu_16(info.ethertype),
info.l3_len, info.l4_proto, info.l4_len, buf);
if (rx_ol_flags & PKT_RX_LRO)
printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
if (info.is_tunnel == 1)
printf("rx: outer_l2_len=%d outer_ethertype=%x "
"outer_l3_len=%d\n", info.outer_l2_len,
rte_be_to_cpu_16(info.outer_ethertype),
info.outer_l3_len);
/* dump tx packet info */
if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
info.tso_segsz != 0)
printf("tx: m->l2_len=%d m->l3_len=%d "
"m->l4_len=%d\n",
m->l2_len, m->l3_len, m->l4_len);
if (info.is_tunnel == 1) {
if ((tx_offloads &
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
(tx_offloads &
DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
(tx_ol_flags & PKT_TX_OUTER_IPV6))
printf("tx: m->outer_l2_len=%d "
"m->outer_l3_len=%d\n",
m->outer_l2_len,
m->outer_l3_len);
if (info.tunnel_tso_segsz != 0 &&
(m->ol_flags & PKT_TX_TCP_SEG))
printf("tx: m->tso_segsz=%d\n",
m->tso_segsz);
} else if (info.tso_segsz != 0 &&
(m->ol_flags & PKT_TX_TCP_SEG))
printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
printf("tx: flags=%s", buf);
printf("\n");
}
}
if (unlikely(gro_enable)) {
if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
&(gro_ports[fs->rx_port].param));
} else {
gro_ctx = current_fwd_lcore()->gro_ctx;
nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
if (++fs->gro_times >= gro_flush_cycles) {
gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
gro_pkts_num = MAX_PKT_BURST - nb_rx;
nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
RTE_GRO_TCP_IPV4,
&pkts_burst[nb_rx],
gro_pkts_num);
fs->gro_times = 0;
}
}
}
if (gso_ports[fs->tx_port].enable == 0)
tx_pkts_burst = pkts_burst;
else {
gso_ctx = &(current_fwd_lcore()->gso_ctx);
gso_ctx->gso_size = gso_max_segment_size;
for (i = 0; i < nb_rx; i++) {
ret = rte_gso_segment(pkts_burst[i], gso_ctx,
&gso_segments[nb_segments],
GSO_MAX_PKT_BURST - nb_segments);
if (ret >= 0)
nb_segments += ret;
else {
TESTPMD_LOG(DEBUG, "Unable to segment packet");
rte_pktmbuf_free(pkts_burst[i]);
}
}
tx_pkts_burst = gso_segments;
nb_rx = nb_segments;
}
nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
tx_pkts_burst, nb_rx);
if (nb_prep != nb_rx)
printf("Preparing packet burst to transmit failed: %s\n",
rte_strerror(rte_errno));
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
nb_prep);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
}
}
fs->tx_packets += nb_tx;
fs->rx_bad_ip_csum += rx_bad_ip_csum;
fs->rx_bad_l4_csum += rx_bad_l4_csum;
fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
if (unlikely(nb_tx < nb_rx)) {
fs->fwd_dropped += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
end_tsc = rte_rdtsc();
core_cycles = (end_tsc - start_tsc);
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}
struct fwd_engine csum_fwd_engine = {
.fwd_mode_name = "csum",
.port_fwd_begin = NULL,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_checksum_forward,
};