// Copyright (c) 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package edwards25519 import "sync" // basepointTable is a set of 32 affineLookupTables, where table i is generated // from 256i * basepoint. It is precomputed the first time it's used. func basepointTable() *[32]affineLookupTable { basepointTablePrecomp.initOnce.Do(func() { p := NewGeneratorPoint() for i := 0; i < 32; i++ { basepointTablePrecomp.table[i].FromP3(p) for j := 0; j < 8; j++ { p.Add(p, p) } } }) return &basepointTablePrecomp.table } var basepointTablePrecomp struct { table [32]affineLookupTable initOnce sync.Once } // ScalarBaseMult sets v = x * B, where B is the canonical generator, and // returns v. // // The scalar multiplication is done in constant time. func (v *Point) ScalarBaseMult(x *Scalar) *Point { basepointTable := basepointTable() // Write x = sum(x_i * 16^i) so x*B = sum( B*x_i*16^i ) // as described in the Ed25519 paper // // Group even and odd coefficients // x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B // + x_1*16^1*B + x_3*16^3*B + ... + x_63*16^63*B // x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B // + 16*( x_1*16^0*B + x_3*16^2*B + ... + x_63*16^62*B) // // We use a lookup table for each i to get x_i*16^(2*i)*B // and do four doublings to multiply by 16. digits := x.signedRadix16() multiple := &affineCached{} tmp1 := &projP1xP1{} tmp2 := &projP2{} // Accumulate the odd components first v.Set(NewIdentityPoint()) for i := 1; i < 64; i += 2 { basepointTable[i/2].SelectInto(multiple, digits[i]) tmp1.AddAffine(v, multiple) v.fromP1xP1(tmp1) } // Multiply by 16 tmp2.FromP3(v) // tmp2 = v in P2 coords tmp1.Double(tmp2) // tmp1 = 2*v in P1xP1 coords tmp2.FromP1xP1(tmp1) // tmp2 = 2*v in P2 coords tmp1.Double(tmp2) // tmp1 = 4*v in P1xP1 coords tmp2.FromP1xP1(tmp1) // tmp2 = 4*v in P2 coords tmp1.Double(tmp2) // tmp1 = 8*v in P1xP1 coords tmp2.FromP1xP1(tmp1) // tmp2 = 8*v in P2 coords tmp1.Double(tmp2) // tmp1 = 16*v in P1xP1 coords v.fromP1xP1(tmp1) // now v = 16*(odd components) // Accumulate the even components for i := 0; i < 64; i += 2 { basepointTable[i/2].SelectInto(multiple, digits[i]) tmp1.AddAffine(v, multiple) v.fromP1xP1(tmp1) } return v } // ScalarMult sets v = x * q, and returns v. // // The scalar multiplication is done in constant time. func (v *Point) ScalarMult(x *Scalar, q *Point) *Point { checkInitialized(q) var table projLookupTable table.FromP3(q) // Write x = sum(x_i * 16^i) // so x*Q = sum( Q*x_i*16^i ) // = Q*x_0 + 16*(Q*x_1 + 16*( ... + Q*x_63) ... ) // <------compute inside out--------- // // We use the lookup table to get the x_i*Q values // and do four doublings to compute 16*Q digits := x.signedRadix16() // Unwrap first loop iteration to save computing 16*identity multiple := &projCached{} tmp1 := &projP1xP1{} tmp2 := &projP2{} table.SelectInto(multiple, digits[63]) v.Set(NewIdentityPoint()) tmp1.Add(v, multiple) // tmp1 = x_63*Q in P1xP1 coords for i := 62; i >= 0; i-- { tmp2.FromP1xP1(tmp1) // tmp2 = (prev) in P2 coords tmp1.Double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords tmp2.FromP1xP1(tmp1) // tmp2 = 2*(prev) in P2 coords tmp1.Double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords tmp2.FromP1xP1(tmp1) // tmp2 = 4*(prev) in P2 coords tmp1.Double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords tmp2.FromP1xP1(tmp1) // tmp2 = 8*(prev) in P2 coords tmp1.Double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords v.fromP1xP1(tmp1) // v = 16*(prev) in P3 coords table.SelectInto(multiple, digits[i]) tmp1.Add(v, multiple) // tmp1 = x_i*Q + 16*(prev) in P1xP1 coords } v.fromP1xP1(tmp1) return v } // basepointNafTable is the nafLookupTable8 for the basepoint. // It is precomputed the first time it's used. func basepointNafTable() *nafLookupTable8 { basepointNafTablePrecomp.initOnce.Do(func() { basepointNafTablePrecomp.table.FromP3(NewGeneratorPoint()) }) return &basepointNafTablePrecomp.table } var basepointNafTablePrecomp struct { table nafLookupTable8 initOnce sync.Once } // VarTimeDoubleScalarBaseMult sets v = a * A + b * B, where B is the canonical // generator, and returns v. // // Execution time depends on the inputs. func (v *Point) VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point { checkInitialized(A) // Similarly to the single variable-base approach, we compute // digits and use them with a lookup table. However, because // we are allowed to do variable-time operations, we don't // need constant-time lookups or constant-time digit // computations. // // So we use a non-adjacent form of some width w instead of // radix 16. This is like a binary representation (one digit // for each binary place) but we allow the digits to grow in // magnitude up to 2^{w-1} so that the nonzero digits are as // sparse as possible. Intuitively, this "condenses" the // "mass" of the scalar onto sparse coefficients (meaning // fewer additions). basepointNafTable := basepointNafTable() var aTable nafLookupTable5 aTable.FromP3(A) // Because the basepoint is fixed, we can use a wider NAF // corresponding to a bigger table. aNaf := a.nonAdjacentForm(5) bNaf := b.nonAdjacentForm(8) // Find the first nonzero coefficient. i := 255 for j := i; j >= 0; j-- { if aNaf[j] != 0 || bNaf[j] != 0 { break } } multA := &projCached{} multB := &affineCached{} tmp1 := &projP1xP1{} tmp2 := &projP2{} tmp2.Zero() // Move from high to low bits, doubling the accumulator // at each iteration and checking whether there is a nonzero // coefficient to look up a multiple of. for ; i >= 0; i-- { tmp1.Double(tmp2) // Only update v if we have a nonzero coeff to add in. if aNaf[i] > 0 { v.fromP1xP1(tmp1) aTable.SelectInto(multA, aNaf[i]) tmp1.Add(v, multA) } else if aNaf[i] < 0 { v.fromP1xP1(tmp1) aTable.SelectInto(multA, -aNaf[i]) tmp1.Sub(v, multA) } if bNaf[i] > 0 { v.fromP1xP1(tmp1) basepointNafTable.SelectInto(multB, bNaf[i]) tmp1.AddAffine(v, multB) } else if bNaf[i] < 0 { v.fromP1xP1(tmp1) basepointNafTable.SelectInto(multB, -bNaf[i]) tmp1.SubAffine(v, multB) } tmp2.FromP1xP1(tmp1) } v.fromP2(tmp2) return v }