/* Copyright (c) 2019 DERO Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package randomx import ( "git.gammaspectra.live/P2Pool/go-randomx/fpu" "math" "runtime" ) import "math/bits" import "encoding/binary" import "golang.org/x/crypto/blake2b" type REG struct { Hi uint64 Lo uint64 } type VM struct { State_start [64]byte buffer [RANDOMX_PROGRAM_SIZE*8 + 16*8]byte // first 128 bytes are entropy below rest are program bytes Prog []byte ScratchPad []byte ByteCode [RANDOMX_PROGRAM_SIZE]InstructionByteCode // program configuration see program.hpp entropy [16]uint64 reg REGISTER_FILE // the register file mem MemoryRegisters config Config // configuration datasetOffset uint64 Cache *Randomx_Cache // randomx cache } func MaskRegisterExponentMantissa(f float64, mode uint64) float64 { return math.Float64frombits((math.Float64bits(f) & dynamicMantissaMask) | mode) } func (cache *Randomx_Cache) VM_Initialize() *VM { return &VM{Cache: cache} //// setup the cache } type Config struct { eMask [2]uint64 readReg0, readReg1, readReg2, readReg3 uint64 } type REGISTER_FILE struct { r [8]uint64 f [4][2]float64 e [4][2]float64 a [4][2]float64 } type MemoryRegisters struct { mx, ma uint64 //addr_t mx, ma; mempry uint64 // uint8_t* memory = nullptr; } const LOW = 0 const HIGH = 1 // calculate hash based on input func (vm *VM) Run(input_hash []byte) { var mix_block [8]uint64 //fmt.Printf("%x \n", input_hash) fillAes4Rx4(input_hash[:], vm.buffer[:]) for i := range vm.entropy { vm.entropy[i] = binary.LittleEndian.Uint64(vm.buffer[i*8:]) } vm.Prog = vm.buffer[len(vm.entropy)*8:] for i := range vm.reg.r { vm.reg.r[i] = 0 } // do more initialization before we run vm.reg.a[0][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[0])) vm.reg.a[0][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[1])) vm.reg.a[1][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[2])) vm.reg.a[1][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[3])) vm.reg.a[2][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[4])) vm.reg.a[2][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[5])) vm.reg.a[3][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[6])) vm.reg.a[3][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[7])) vm.mem.ma = vm.entropy[8] & CacheLineAlignMask vm.mem.mx = vm.entropy[10] addressRegisters := vm.entropy[12] vm.config.readReg0 = 0 + (addressRegisters & 1) addressRegisters >>= 1 vm.config.readReg1 = 2 + (addressRegisters & 1) addressRegisters >>= 1 vm.config.readReg2 = 4 + (addressRegisters & 1) addressRegisters >>= 1 vm.config.readReg3 = 6 + (addressRegisters & 1) vm.datasetOffset = (vm.entropy[13] % (DATASETEXTRAITEMS + 1)) * CacheLineSize vm.config.eMask[0] = getFloatMask(vm.entropy[14]) vm.config.eMask[1] = getFloatMask(vm.entropy[15]) //fmt.Printf("prog %x entropy 0 %x %f \n", vm.buffer[:32], vm.entropy[0], vm.reg.a[0][HIGH]) vm.Compile_TO_Bytecode() spAddr0 := vm.mem.mx spAddr1 := vm.mem.ma for ic := 0; ic < RANDOMX_PROGRAM_ITERATIONS; ic++ { spMix := vm.reg.r[vm.config.readReg0] ^ vm.reg.r[vm.config.readReg1] spAddr0 ^= spMix spAddr0 &= ScratchpadL3Mask64 spAddr1 ^= spMix >> 32 spAddr1 &= ScratchpadL3Mask64 //fmt.Printf("spAddr0 %x %x\n", spAddr0,spAddr1) for i := uint64(0); i < REGISTERSCOUNT; i++ { vm.reg.r[i] ^= vm.Load64(spAddr0 + 8*i) //fmt.Printf("r[%d] %x \n", i,vm.reg.r[i]); } for i := uint64(0); i < REGISTERCOUNTFLT; i++ { vm.reg.f[i][LOW] = vm.Load32F(spAddr1 + 8*i) vm.reg.f[i][HIGH] = vm.Load32F(spAddr1 + 8*i + 4) //fmt.Printf("lo %f %f\n", vm.reg.f[i][LOW] , vm.reg.f[i][HIGH] ) } for i := uint64(0); i < REGISTERCOUNTFLT; i++ { vm.reg.e[i][LOW] = vm.Load32F(spAddr1 + 8*(i+REGISTERCOUNTFLT)) vm.reg.e[i][HIGH] = vm.Load32F(spAddr1 + 8*(i+REGISTERCOUNTFLT) + 4) // fmt.Printf("OR %x %x\n", (math.Float64bits(vm.reg.e[i][LOW]) & dynamicMantissaMask) | vm.config.eMask[LOW] , (math.Float64bits(vm.reg.e[i][HIGH]) & dynamicMantissaMask)| vm.config.eMask[HIGH] ) vm.reg.e[i][LOW] = MaskRegisterExponentMantissa(vm.reg.e[i][LOW], vm.config.eMask[LOW]) vm.reg.e[i][HIGH] = MaskRegisterExponentMantissa(vm.reg.e[i][HIGH], vm.config.eMask[HIGH]) //fmt.Printf("lo e %f %f\n", vm.reg.e[i][LOW] , vm.reg.e[i][HIGH] ) } //for i := uint64(0); i < REGISTERCOUNTFLT; i++{ //fmt.Printf("a low %f high %f\n", vm.reg.a[i][LOW] , vm.reg.a[i][HIGH] ) //} vm.InterpretByteCode() vm.mem.mx ^= vm.reg.r[vm.config.readReg2] ^ vm.reg.r[vm.config.readReg3] vm.mem.mx &= CacheLineAlignMask //fmt.Printf("mx %x\n",vm.mem.mx ) // execute diffuser superscalar program to get dataset 64 bytes { itemnumber := (vm.datasetOffset + vm.mem.ma) / CacheLineSize //fmt.Printf("qitem number %x\n", itemnumber) vm.Cache.InitDatasetItem(mix_block[:], itemnumber) for i := range vm.reg.r { vm.reg.r[i] ^= mix_block[i] } } vm.mem.mx, vm.mem.ma = vm.mem.ma, vm.mem.mx // swap the elements for i := uint64(0); i < REGISTERSCOUNT; i++ { binary.BigEndian.PutUint64(vm.ScratchPad[spAddr1+(8*i):], bits.RotateLeft64(vm.reg.r[i], 32)) //fmt.Printf("reg r[%d] %x\n", i,vm.reg.r[i]) } for i := uint64(0); i < REGISTERCOUNTFLT; i++ { vm.reg.f[i][LOW] = math.Float64frombits(math.Float64bits(vm.reg.f[i][LOW]) ^ math.Float64bits(vm.reg.e[i][LOW])) vm.reg.f[i][HIGH] = math.Float64frombits(math.Float64bits(vm.reg.f[i][HIGH]) ^ math.Float64bits(vm.reg.e[i][HIGH])) binary.BigEndian.PutUint64(vm.ScratchPad[spAddr0+(16*i):], bits.RotateLeft64(math.Float64bits(vm.reg.f[i][LOW]), 32)) binary.BigEndian.PutUint64(vm.ScratchPad[spAddr0+(16*i)+8:], bits.RotateLeft64(math.Float64bits(vm.reg.f[i][HIGH]), 32)) // fmt.Printf("%d %+v\n", i, vm.reg.f[i]) } spAddr0 = 0 spAddr1 = 0 } } func (vm *VM) CalculateHash(input []byte, output []byte) { var buf [8]byte // Lock thread due to rounding mode flags runtime.LockOSThread() defer runtime.UnlockOSThread() //restore rounding mode to golang expected one defer fpu.SetRoundingMode(fpu.RoundingModeToNearest) // reset rounding mode if new hash being calculated fpu.SetRoundingMode(fpu.RoundingModeToNearest) input_hash := blake2b.Sum512(input) vm.ScratchPad = make([]byte, ScratchpadSize, ScratchpadSize) // calculate and fill scratchpad fillAes1Rx4(input_hash[:], vm.ScratchPad) hash512, _ := blake2b.New512(nil) temp_hash := input_hash[:] for chain := 0; chain < RANDOMX_PROGRAM_COUNT-1; chain++ { vm.Run(temp_hash) hash512.Reset() for i := range vm.reg.r { binary.LittleEndian.PutUint64(buf[:], vm.reg.r[i]) hash512.Write(buf[:]) } for i := range vm.reg.f { binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][LOW])) hash512.Write(buf[:]) binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][HIGH])) hash512.Write(buf[:]) } for i := range vm.reg.e { binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][LOW])) hash512.Write(buf[:]) binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][HIGH])) hash512.Write(buf[:]) } for i := range vm.reg.a { binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.a[i][LOW])) hash512.Write(buf[:]) binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.a[i][HIGH])) hash512.Write(buf[:]) } temp_hash = hash512.Sum(nil) //fmt.Printf("%d temphash %x\n", chain, temp_hash) } // final loop executes here vm.Run(temp_hash) // now hash the scratch pad and place into register a hashAes1Rx4(vm.ScratchPad, temp_hash) hash256, _ := blake2b.New256(nil) hash256.Reset() for i := range vm.reg.r { binary.LittleEndian.PutUint64(buf[:], vm.reg.r[i]) hash256.Write(buf[:]) } for i := range vm.reg.f { binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][LOW])) hash256.Write(buf[:]) binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][HIGH])) hash256.Write(buf[:]) } for i := range vm.reg.e { binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][LOW])) hash256.Write(buf[:]) binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][HIGH])) hash256.Write(buf[:]) } // copy temp_hash as it first copied to register and then hashed hash256.Write(temp_hash) final_hash := hash256.Sum(nil) copy(output, final_hash) //fmt.Printf("final %x\n", final_hash) } /* const mantissaSize = 52; const exponentSize = 11; const mantissaMask = ( (uint64(1)) << mantissaSize) - 1; const exponentMask = (uint64(1) << exponentSize) - 1; const exponentBias = 1023; const dynamicExponentBits = 4; const staticExponentBits = 4; const constExponentBits uint64= 0x300; const dynamicMantissaMask = ( uint64(1) << (mantissaSize + dynamicExponentBits)) - 1; */ const mask22bit = (uint64(1) << 22) - 1 func getSmallPositiveFloatBits(entropy uint64) uint64 { exponent := entropy >> 59 //0..31 mantissa := entropy & mantissaMask exponent += exponentBias exponent &= exponentMask exponent = exponent << mantissaSize return exponent | mantissa } func getStaticExponent(entropy uint64) uint64 { exponent := constExponentBits exponent |= (entropy >> (64 - staticExponentBits)) << dynamicExponentBits exponent <<= mantissaSize return exponent } func getFloatMask(entropy uint64) uint64 { return (entropy & mask22bit) | getStaticExponent(entropy) }