go-randomx/vm.go
DataHoarder aab8f99dd4
All checks were successful
continuous-integration/drone/push Build is passing
continuous-integration/drone/tag Build is passing
Include softfloat64 and allow for purego implementation
2024-04-17 06:04:29 +02:00

265 lines
7.4 KiB
Go

/*
Copyright (c) 2019 DERO Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package randomx
import (
"git.gammaspectra.live/P2Pool/go-randomx/v2/aes"
"math"
"runtime"
"unsafe"
)
import "encoding/binary"
import "golang.org/x/crypto/blake2b"
type REG struct {
Hi uint64
Lo uint64
}
type VM struct {
StateStart [64]byte
ScratchPad ScratchPad
ByteCode ByteCode
mem MemoryRegisters
config Config // configuration
datasetOffset uint64
Dataset Randomx_Dataset
Cache *Randomx_Cache // randomx cache
}
type Config struct {
eMask [2]uint64
readReg [4]uint64
}
// Run calculate hash based on input
// Warning: Underlying callers will run asm.SetRoundingMode directly
// It is the caller's responsibility to set and restore the mode to softfloat64.RoundingModeToNearest between full executions
// Additionally, runtime.LockOSThread and defer runtime.UnlockOSThread is recommended to prevent other goroutines sharing these changes
func (vm *VM) Run(inputHash [64]byte, roundingMode uint8) (reg RegisterFile) {
reg.FPRC = roundingMode
// buffer first 128 bytes are entropy below rest are program bytes
var buffer [16*8 + RANDOMX_PROGRAM_SIZE*8]byte
aes.FillAes4Rx4(inputHash, buffer[:])
entropy := (*[16]uint64)(unsafe.Pointer(&buffer))
prog := buffer[len(entropy)*8:]
// do more initialization before we run
for i := range entropy[:8] {
reg.A[i/2][i%2] = SmallPositiveFloatBits(entropy[i])
}
vm.mem.ma = entropy[8] & CacheLineAlignMask
vm.mem.mx = entropy[10]
addressRegisters := entropy[12]
for i := range vm.config.readReg {
vm.config.readReg[i] = uint64(i*2) + (addressRegisters & 1)
addressRegisters >>= 1
}
vm.datasetOffset = (entropy[13] % (DATASETEXTRAITEMS + 1)) * CacheLineSize
vm.config.eMask[LOW] = EMask(entropy[14])
vm.config.eMask[HIGH] = EMask(entropy[15])
vm.ByteCode = CompileProgramToByteCode(prog)
spAddr0 := vm.mem.mx
spAddr1 := vm.mem.ma
var rlCache RegisterLine
for ic := 0; ic < RANDOMX_PROGRAM_ITERATIONS; ic++ {
spMix := reg.R[vm.config.readReg[0]] ^ reg.R[vm.config.readReg[1]]
spAddr0 ^= spMix
spAddr0 &= ScratchpadL3Mask64
spAddr1 ^= spMix >> 32
spAddr1 &= ScratchpadL3Mask64
//TODO: optimize these loads!
for i := uint64(0); i < RegistersCount; i++ {
reg.R[i] ^= vm.ScratchPad.Load64(uint32(spAddr0 + 8*i))
}
for i := uint64(0); i < RegistersCountFloat; i++ {
reg.F[i] = vm.ScratchPad.Load32FA(uint32(spAddr1 + 8*i))
}
for i := uint64(0); i < RegistersCountFloat; i++ {
reg.E[i] = vm.ScratchPad.Load32FA(uint32(spAddr1 + 8*(i+RegistersCountFloat)))
reg.E[i][LOW] = MaskRegisterExponentMantissa(reg.E[i][LOW], vm.config.eMask[LOW])
reg.E[i][HIGH] = MaskRegisterExponentMantissa(reg.E[i][HIGH], vm.config.eMask[HIGH])
}
// Run the actual bytecode
vm.ByteCode.Execute(&reg, &vm.ScratchPad, vm.config.eMask)
vm.mem.mx ^= reg.R[vm.config.readReg[2]] ^ reg.R[vm.config.readReg[3]]
vm.mem.mx &= CacheLineAlignMask
vm.Dataset.PrefetchDataset(vm.datasetOffset + vm.mem.mx)
// execute diffuser superscalar program to get dataset 64 bytes
vm.Dataset.ReadDataset(vm.datasetOffset+vm.mem.ma, &reg.R, &rlCache)
// swap the elements
vm.mem.mx, vm.mem.ma = vm.mem.ma, vm.mem.mx
for i := uint64(0); i < RegistersCount; i++ {
vm.ScratchPad.Store64(uint32(spAddr1+8*i), reg.R[i])
}
for i := uint64(0); i < RegistersCountFloat; i++ {
reg.F[i][LOW] = Xor(reg.F[i][LOW], reg.E[i][LOW])
reg.F[i][HIGH] = Xor(reg.F[i][HIGH], reg.E[i][HIGH])
vm.ScratchPad.Store64(uint32(spAddr0+16*i), math.Float64bits(reg.F[i][LOW]))
vm.ScratchPad.Store64(uint32(spAddr0+16*i+8), math.Float64bits(reg.F[i][HIGH]))
}
spAddr0 = 0
spAddr1 = 0
}
return reg
}
func (vm *VM) InitScratchpad(seed *[64]byte) {
vm.ScratchPad.Init(seed)
}
func (vm *VM) RunLoops(tempHash [64]byte) RegisterFile {
var buf [8]byte
hash512, _ := blake2b.New512(nil)
// Lock thread due to rounding mode flags
runtime.LockOSThread()
defer runtime.UnlockOSThread()
roundingMode := uint8(0)
for chain := 0; chain < RANDOMX_PROGRAM_COUNT-1; chain++ {
reg := vm.Run(tempHash, roundingMode)
roundingMode = reg.FPRC
hash512.Reset()
for i := range reg.R {
binary.LittleEndian.PutUint64(buf[:], reg.R[i])
hash512.Write(buf[:])
}
for i := range reg.F {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.F[i][LOW]))
hash512.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.F[i][HIGH]))
hash512.Write(buf[:])
}
for i := range reg.E {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.E[i][LOW]))
hash512.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.E[i][HIGH]))
hash512.Write(buf[:])
}
for i := range reg.A {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.A[i][LOW]))
hash512.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.A[i][HIGH]))
hash512.Write(buf[:])
}
hash512.Sum(tempHash[:0])
}
// final loop executes here
reg := vm.Run(tempHash, roundingMode)
roundingMode = reg.FPRC
//restore rounding mode
vm.ByteCode.SetRoundingMode(&reg, 0)
return reg
}
func (vm *VM) CalculateHash(input []byte, output *[32]byte) {
var buf [8]byte
tempHash := blake2b.Sum512(input)
vm.InitScratchpad(&tempHash)
reg := vm.RunLoops(tempHash)
// now hash the scratch pad and place into register a
aes.HashAes1Rx4(vm.ScratchPad[:], &tempHash)
hash256, _ := blake2b.New256(nil)
hash256.Reset()
for i := range reg.R {
binary.LittleEndian.PutUint64(buf[:], reg.R[i])
hash256.Write(buf[:])
}
for i := range reg.F {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.F[i][LOW]))
hash256.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.F[i][HIGH]))
hash256.Write(buf[:])
}
for i := range reg.E {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.E[i][LOW]))
hash256.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(reg.E[i][HIGH]))
hash256.Write(buf[:])
}
// copy tempHash as it first copied to register and then hashed
hash256.Write(tempHash[:])
hash256.Sum(output[:0])
}