PAXOS

Ring Signatures

Jimmy Song

Former VP Engineering Armory

Core Contributor (13 commits merged)
btcd Contributor

Principal Architect at Paxos

Blogger (http://medium.com/@jimmysong)

{> PAXOS

http://medium.com/@jimmysong
http://medium.com/@jimmysong

Monero Library in Go

github.com/paxos-bankchain/moneroutil
Ring Signature creation/verification v
Address utilities work v

Ring Confidential Transactions \WIP

{> PAXOS

https://github.com/paxos-bankchain/moneroutil
https://github.com/paxos-bankchain/moneroutil

Monero Library in Go

p Jimmy Song @jimmysong - May 23
é Something I've been working on, will introduce it at the NYC Bitdevs meetup
‘W
«B» tomorrow: @fluffyponyza

paxos-bankchain/moneroutil

Utilities for Monero. Contribute to moneroutil
development by creating an account on GitHub.

github.com

Bitsquare @bitsquare_ - 7h
@ So thats the reason behind the price rally?

¥ 2

' Riccardo Spagni &
Followi
& @fluffyponyza Sroning

Replying to @bitsquare_ @jimmysong

If a Go library were the reason for the price rally
my life would be complete & | could literally die
now. But the market isn't that bright.

;ETWEETS ;lgES @ m :? fé:l x n .

8:00 AM - 24 May 2017

<{> PAXOS

Ring Signature Creation

e Select a total of n public keys P., the real P at index Pj

e Your private key is X, and PJ.=XG

For i=7j, select a bunch of random scalars C, and r, and
calculate L .=r .G+c P,

e Choose random scalar q, L.=qG

o c=H(m| L [IL,[]...]IL,)

® C,=C-C,~C,~...-C_ (... doesn’tinclude j)

® r,=g-C.X

o L.,=qG=(r +c, x)G-riG+c1.xG=r G+c,P or L.=r ,G+c P,
o S|gnature—(c ooy C M, My,)

{> PAXOS

Ring Signature Verification

e Signature = (¢.,C,,...,C_,r.,r ,...,r)
o L.=r.G+c.P.

e c=H(m| L, [[L,||...[IL,)

e |fc==c +c +..*+C, signature is valid

{> PAXOS

Ring Confidential Transactions

Similar to Ring Signatures

Adds Adam Back’s Linkable Spontaneous Anonymous
Group Signatures (shrinks sigs by about half)
Requires explicit Transaction Fees

Amounts blinded using Pedersen Commitments
Requires Range Proofs for Pedersen Commitments
Requires Borromean Signatures instead of Schnorr
Fewer outputs, but longer signatures

{> PAXOS

Questions?

@jimmysong on twitter, github and medium
https://github.com/paxos-bankchain/moneroutil

https://github.com/paxos-bankchain/moneroutil
https://github.com/paxos-bankchain/moneroutil

Appendix

Twisted Edwards Curves

Elliptical: (y? = x® + bx + ¢)

/

/

\

//— \\

\
/

/
_

DN

{> PAXOS

Group Law for Elliptical Curves

{> PAXOS

12

Group Law (two different points)
Curve: y?=x>+ax+b

Pi=(X1, Y1) P=(X5,Y,)
P.+P,=(X,,Y.,)

s=(Y,-Y;) 7/ (X,=%;)

X,=S°=X, =X,

Y3=8(X;7X5) -y,

{> PAXOS

secp256k1

e Curve: y?=x3+7
e Prime Field (p) = 22°°-232-977

Generator Point (G) =

(79BE667EF9DCBBAC55A06295CE870B0B7029BFCDB2DCE28D959F2815B16F81798,
483ADA7726A3C4655DA4FBFCOE1108A8FD17B448A68554199C47D0B8FFB10D4B8)

Group Order (n) = 2256-9x14551231950b75fc4402da1732fc9bebf
Identity = point at infinity

P=sG=G+G+..+G (s times)

Scalar multiplication basis for public key cryptography

{> PAXOS 14

Twisted Edwards (ax?+y?=1+dx?y?)

4y

{> PAXOS

Group Law for Twisted Edwards Curve
Curve: ax’+y?=1+dx?y?

Pi=(X1,y,) Py=(X,,Y,)
P.+P,=(X,,Y.,)

X3= (XY, 1Y%,) / (1+dX X, Y, Y,)

Y3= (Y Y,-aX %,) / (1-dX x,y,Y,)

{> PAXOS

Ed25519

Curve: -x%+y?=1-(121665/121666) x2y?

Prime Field p = 2%°°-19

Generator Point (G) =(x, %) where x is positive

Group Order (n) = 2252+9x14def9dea2f79cd65812631a5¢cf5d3ed
Identity = (0, 1)

P=sG=G+G+.+G (s times)

Scalar multiplication basis for public key cryptography

{> PAXOS

17

Cryptonote Protocol

Used by Monero, Bytecoin, etc

Advantages of Cryptonote

e Privacy

e Faster confirmation

e Continuously declining emission
schedule

{> PAXOS

Disadvantages of Cryptonote

e Much larger signatures

e Version 1 requires outputs of same
amounts to get privacy

e Scalabillity is hard

e Tricky bugs

e Hard to do light clients

{> PAXOS

Schnorr Signature

Pick a random scalar r with R=rG

Let x be the private key of the signer, P=xG is the public key
c=H(m| |Encode(R))

s=r-cx mod n

Signature = (c, s)

R =sG+cP=sG+cxG=(s+cx)G=(r-cx+cx)G=rG

c,=H(m| |Encode(R,))

If c==c , signature is valid.

{> PAXOS 21

Keys in CryptoNote

All private keys are two Ed25519 scalars (a,b)
All public keys are two Ed25519 points (A,B)
A=aG and B=bG

a is called the viewing key

b is called the signing key

Addresses are encoded in a baseb58-like
encoding of the public key

{> PAXOS

22

Encoding and Hashing

Any point P can be encoded in 32 bytes (255 bits for the y
coordinate and 1 bit for the sign of x), call these

t = Encode(P), P = Decode(t)

Scalars are encoded to bytes in little-endian format E(s)
Let H be a hash function (Monero uses Keccak256)

You can hash both scalars and points!

H.=H(E(s))

H,=8%Decode(H_(Encode(Point)))

H,_..=H(H,(8*Encode(Point)) | |output_index)

{> PAXOS

23

One Time Public Key

All outputs are to Ed25519 Points

Choose a random scalar r, with corresponding R=rG

R gets published as part of a tx (transaction public key)
Create a one-time public key P=H, __(rA)G+B

One-time private key is x=H,___(aR)+b because B=bG and
aR=arG=raG=rA. Note P=xG

Note if you have viewing key a, you can derive P as well
Only person with private signing key b can derive x

P is published as the outpoint key (receiver of funds)

r,a, b, x never transmitted, kept private

{> PAXOS

24

Ring Signature

Based on Schnorr Signatures

Signer knows one-time private key: x=H, __(aR)+b

P=XG is the outpoint key being spent

Must publish K=xHP(P) as part of the spend. This is how
double-spending is prevented. Spending the same output
twice would publish the same K.

To add privacy, other outpoint keys are added to a mix ring.
e Mix ring has z outpoint keys one of which is P

{> PAXOS 25

Ring Signature continued...

Select a bunch of other public keys P_, the real P at index j
For 1=J, select a bunch of random scalars c. and r.

For i=j, calculate L.=r .G+c,P. and R.=r H, (P,)+c.K
Choose random scalar q, L, qG R qH (P)
CI'|(mIILIIR|IL||RII ||L||R)
c.=C-C,-C,~...-C, mod n (doesntlncludej)

y
r,=q- c X mod n

L.,=qG= J(r +C.X)G=r.G+c xG= r.G+c.P.

= qH(P)—€r+cx)H(P) rH(P) +c K

Slgnature—(Kc ...,c r1, .. r)

{> PAXOS 26

Ring Signature Verification

e Signhature =
(K,c,cpyovvyC o, e, 1)
o L. =r.G+c P,
e R=r H,(P.)+c.K
o c=H(m|[L [IR, IIL, I IR, I|---T1IL,IIR,)
e |[fc==c +c, +..+c_mod n, signature is valid

{> PAXOS

27

Monero Bug

Bug disclosed on 2017-05-18
el

o DISCLOSURE OF A MAJOR BUG IN CRYPTONOTE BASED
CURRENCIES

Posted by: luigi1111 and Riccardo "fluffypony” Spagni

Overview

In Monero we've discovered and patched a critical bug that affects all CryptoNote-based cryptocurrencies, and allows for the creation of an
unlimited number of coins in a way that is undetectable to an observer unless they know about the fatal flaw and can search for it.

We patched it quite some time ago, and confirmed that the Monero blockchain had NEVER been exploited using this, but until the hard
fork that we had a few weeks ago we were unsure as to whether or not the entire network had updated

Once we were certain that the network had updated, we notified all active and affected CryptoNote coins, including CryptoNote
themselves, Bytecoin, Forknote, Boolberry, DashCoin, and DigitalNote.

Note that, at this time, only Monero, Aeon, Boolberry, and Forknote have updated. We have given the other currencies as much time
as possible, but cannot hold back disclosure any longer.

We strongly caution against anyone using, trading, exchanging, or running services involving the following currencies affected
by this issue: Bytecoin, DashCoin, DigitalNote

<{> PAXOS

29

Ring Signature

e Signer knows one-time private key: x=HP_>S(aR)+b

e P=XG is the outpoint key being spent

e Must publish K=xH,(P) as part of the spend. This is how
double-spending is prevented. This is known only to signer.
Spending the same output twice would publish the same K

e To0 add privacy, other outpoint keys are added to a mix ring.

e Mixring has z-1 other outpoint keys (P.) and P for a total of
Z keys

{> PAXOS 30

Vulnerability

e Must publish K=xH,(P) as part of the spend. This is how
double-spending is prevented. This is known only to signer.
Spending the same output twice would publish the same K

e K must be a part of the group. If not, you can create a
different K that’s not a part of the group but where all the
other equations go through.

{> PAXOS 31

Mitigation
e Check that K is part of the group by checking that the order

is the same: nK=(0, 1)
e Identity is (0,1) or 1 for the group law.

{> PAXOS

32

