
Ring Signatures



2

Jimmy Song
● Former VP Engineering Armory
● Core Contributor (13 commits merged)
● btcd Contributor
● Principal Architect at Paxos
● Blogger (http://medium.com/@jimmysong)

http://medium.com/@jimmysong
http://medium.com/@jimmysong


3

Monero Library in Go
● github.com/paxos-bankchain/moneroutil
● Ring Signature creation/verification ✓
● Address utilities work ✓
● Ring Confidential Transactions WIP

https://github.com/paxos-bankchain/moneroutil
https://github.com/paxos-bankchain/moneroutil


4

Monero Library in Go



5

Ring Signature Creation
● Select a total of n public keys Pi, the real P at index Pj
● Your private key is x, and Pj=xG
● For i≠j, select a bunch of random scalars ci and ri and 

calculate Li=riG+ciPi
● Choose random scalar q, Lj=qG
● c=H(m||L1||L2||...||Ln) 
● cj=c-c1-c2-...-cn (... doesn’t include j)
● rj=q-cjx 
● Lj=qG=(rj+cjx)G=rjG+cjxG=rjG+cjP or Lj=rjG+cjPj
● Signature = (c1,c2,...,cn,r1,r2,...,rn)



6

Ring Signature Verification
● Signature = (c1,c2,...,cn,r1,r2,...,rn)

● Li=riG+ciPi 
● c=H(m||L1||L2||...||Ln) 

● If c == c1+c2+...+cn, signature is valid



7

Ring Confidential Transactions
● Similar to Ring Signatures
● Adds Adam Back’s Linkable Spontaneous Anonymous 

Group Signatures (shrinks sigs by about half)
● Requires explicit Transaction Fees
● Amounts blinded using Pedersen Commitments
● Requires Range Proofs for Pedersen Commitments
● Requires Borromean Signatures instead of Schnorr
● Fewer outputs, but longer signatures



Questions?

8

@jimmysong on twitter, github and medium
https://github.com/paxos-bankchain/moneroutil

https://github.com/paxos-bankchain/moneroutil
https://github.com/paxos-bankchain/moneroutil


Appendix

9



Twisted Edwards Curves

10



11

Elliptical: (y2 = x3 + bx + c)



12

Group Law for Elliptical Curves



13

Group Law (two different points)
Curve: y2=x3+ax+b
P1=(x1,y1) P2=(x2,y2) 
P1+P2=(x3,y3)
s=(y2-y1)/(x2-x1)
x3=s

2-x1-x2
y3=s(x1-x3)-y1



14

secp256k1
● Curve: y2=x3+7
● Prime Field (p) = 2256-232-977
● Generator Point (G) = 

(79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 
483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)

● Group Order (n) = 2256-0x14551231950b75fc4402da1732fc9bebf
● Identity = point at infinity
● P=sG=G+G+…+G (s times)
● Scalar multiplication basis for public key cryptography



15

Twisted Edwards (ax2+y2=1+dx2y2)



16

Group Law for Twisted Edwards Curve
Curve: ax2+y2=1+dx2y2

P1=(x1,y1) P2=(x2,y2) 
P1+P2=(x3,y3)
x3=(x1y2+y1x2)/(1+dx1x2y1y2)
y3=(y1y2-ax1x2)/(1-dx1x2y1y2)



17

Ed25519
● Curve: -x2+y2=1-(121665/121666)x2y2

● Prime Field p = 2255-19
● Generator Point (G) =(x,⅘) where x is positive 
● Group Order (n) = 2252+0x14def9dea2f79cd65812631a5cf5d3ed
● Identity = (0,1)
● P=sG=G+G+…+G (s times)
● Scalar multiplication basis for public key cryptography



Cryptonote Protocol

18

Used by Monero, Bytecoin, etc



19

Advantages of Cryptonote
● Privacy
● Faster confirmation
● Continuously declining emission 

schedule



20

Disadvantages of Cryptonote
● Much larger signatures
● Version 1 requires outputs of same 

amounts to get privacy
● Scalability is hard
● Tricky bugs
● Hard to do light clients



21

Schnorr Signature
● Pick a random scalar r with R=rG
● Let x be the private key of the signer,P=xG is the public key
● c=H(m||Encode(R))
● s=r-cx mod n
● Signature = (c,s)
● Rv=sG+cP=sG+cxG=(s+cx)G=(r-cx+cx)G=rG
● cv=H(m||Encode(Rv))
● If c==cv, signature is valid.



22

Keys in CryptoNote
● All private keys are two Ed25519 scalars (a,b)
● All public keys are two Ed25519 points (A,B)
● A=aG and B=bG
● a is called the viewing key
● b is called the signing key
● Addresses are encoded in a base58-like 

encoding of the public key



23

Encoding and Hashing
● Any point P can be encoded in 32 bytes (255 bits for the y 

coordinate and 1 bit for the sign of x), call these                    
t = Encode(P), P = Decode(t)

● Scalars are encoded to bytes in little-endian format E(s)
● Let H be a hash function (Monero uses Keccak256)
● You can hash both scalars and points!
● Hs=H(E(s))
● HP=8*Decode(Hs(Encode(Point)))
● HP->s=H(HP(8*Encode(Point))||output_index)



24

One Time Public Key
● All outputs are to Ed25519 Points
● Choose a random scalar r, with corresponding R=rG
● R gets published as part of a tx (transaction public key)
● Create a one-time public key P=HP->s(rA)G+B
● One-time private key is x=HP->s(aR)+b because B=bG and 

aR=arG=raG=rA. Note P=xG
● Note if you have viewing key a, you can derive P as well
● Only person with private signing key b can derive x
● P is published as the outpoint key (receiver of funds)
● r,a,b,x never transmitted, kept private



25

Ring Signature
● Based on Schnorr Signatures
● Signer knows one-time private key: x=HP->s(aR)+b
● P=xG is the outpoint key being spent
● Must publish K=xHP(P) as part of the spend. This is how 

double-spending is prevented. Spending the same output 
twice would publish the same K.

● To add privacy, other outpoint keys are added to a mix ring.
● Mix ring has z outpoint keys one of which is P



26

Ring Signature continued...
● Select a bunch of other public keys Pi, the real P at index j
● For i≠j, select a bunch of random scalars ci and ri
● For i≠j, calculate Li=riG+ciPi and Ri=riHP(Pi)+ciK
● Choose random scalar q, Lj=qG, Rj=qHP(Pj)
● c=H(m||L1||R1||L2||R2||...||Lz||Rz)
● cj=c-c1-c2-...-cz mod n (... doesn’t include j)
● rj=q-cjx mod n
● Lj=qG=(rj+cjx)G=rjG+cjxG=rjG+cjPj
● Rj=qHP(Pj)=(rj+cjx)HP(Pj)=rjHP(Pj)+cjK
● Signature = (K,c1,c2,...,cz,r1,r2,...,rz)



27

Ring Signature Verification
● Signature = 

(K,c1,c2,...,cz,r1,r2,...,rz)
● Li=riG+ciPi
● Ri=riHP(Pi)+ciK
● c=H(m||L1||R1||L2||R2||...||Lz||Rz)
● If c == c1+c2+...+cz mod n, signature is valid



Monero Bug

28



29

Bug disclosed on 2017-05-18



30

Ring Signature
● Signer knows one-time private key: x=HP->s(aR)+b
● P=xG is the outpoint key being spent
● Must publish K=xHP(P) as part of the spend. This is how 

double-spending is prevented. This is known only to signer. 
Spending the same output twice would publish the same K

● To add privacy, other outpoint keys are added to a mix ring.
● Mix ring has z-1 other outpoint keys (Pi) and P for a total of 

z keys



31

Vulnerability
● Must publish K=xHP(P) as part of the spend. This is how 

double-spending is prevented. This is known only to signer. 
Spending the same output twice would publish the same K

● K must be a part of the group. If not, you can create a 
different K* that’s not a part of the group but where all the 
other equations go through.



32

Mitigation
● Check that K is part of the group by checking that the order 

is the same: nK=(0,1)
● Identity is (0,1) or 1 for the group law.


