Make an integer-only deque

This commit is contained in:
DataHoarder 2022-01-27 18:14:58 +01:00
parent 53a0acdb4c
commit 951c9e89e2
6 changed files with 24 additions and 809 deletions

View file

@ -1,33 +0,0 @@
name: Go
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Go
uses: actions/setup-go@v2
with:
go-version: 1.16
- name: Vet
run: go vet ./...
- name: Build
run: go build -v ./...
- name: Test
run: go test -v ./... -coverprofile=coverage.txt -covermode=atomic
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v1
with:
files: coverage.txt

View file

@ -1,21 +0,0 @@
name: golangci-lint
on:
push:
tags:
- v*
branches:
- master
- main
pull_request:
jobs:
golangci:
name: lint
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: golangci-lint
uses: golangci/golangci-lint-action@v2

View file

@ -1,10 +1,6 @@
# deque
[![GoDoc](https://pkg.go.dev/badge/github.com/gammazero/deque)](https://pkg.go.dev/github.com/gammazero/deque)
[![Build Status](https://github.com/gammazero/deque/actions/workflows/go.yml/badge.svg)](https://github.com/gammazero/deque/actions/workflows/go.yml)
[![Go Report Card](https://goreportcard.com/badge/github.com/gammazero/deque)](https://goreportcard.com/report/github.com/gammazero/deque)
[![codecov](https://codecov.io/gh/gammazero/deque/branch/master/graph/badge.svg)](https://codecov.io/gh/gammazero/deque)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
Fork of [github.com/gammazero/deque](https://github.com/gammazero/deque)
Fast ring-buffer deque ([double-ended queue](https://en.wikipedia.org/wiki/Double-ended_queue)) implementation.

View file

@ -6,7 +6,7 @@ const minCapacity = 16
// Deque represents a single instance of the deque data structure.
type Deque struct {
buf []interface{}
buf []*int
head int
tail int
count int
@ -39,13 +39,13 @@ func New(size ...int) *Deque {
minCap <<= 1
}
var buf []interface{}
var buf []*int
if capacity != 0 {
bufSize := minCap
for bufSize < capacity {
bufSize <<= 1
}
buf = make([]interface{}, bufSize)
buf = make([]*int, bufSize)
}
return &Deque{
@ -67,29 +67,29 @@ func (q *Deque) Len() int {
// PushBack appends an element to the back of the queue. Implements FIFO when
// elements are removed with PopFront(), and LIFO when elements are removed
// with PopBack().
func (q *Deque) PushBack(elem interface{}) {
func (q *Deque) PushBack(elem int) {
q.growIfFull()
q.buf[q.tail] = elem
q.buf[q.tail] = &elem
// Calculate new tail position.
q.tail = q.next(q.tail)
q.count++
}
// PushFront prepends an element to the front of the queue.
func (q *Deque) PushFront(elem interface{}) {
func (q *Deque) PushFront(elem int) {
q.growIfFull()
// Calculate new head position.
q.head = q.prev(q.head)
q.buf[q.head] = elem
q.buf[q.head] = &elem
q.count++
}
// PopFront removes and returns the element from the front of the queue.
// Implements FIFO when used with PushBack(). If the queue is empty, the call
// panics.
func (q *Deque) PopFront() interface{} {
func (q *Deque) PopFront() int {
if q.count <= 0 {
panic("deque: PopFront() called on empty queue")
}
@ -100,13 +100,13 @@ func (q *Deque) PopFront() interface{} {
q.count--
q.shrinkIfExcess()
return ret
return *ret
}
// PopBack removes and returns the element from the back of the queue.
// Implements LIFO when used with PushBack(). If the queue is empty, the call
// panics.
func (q *Deque) PopBack() interface{} {
func (q *Deque) PopBack() int {
if q.count <= 0 {
panic("deque: PopBack() called on empty queue")
}
@ -120,27 +120,27 @@ func (q *Deque) PopBack() interface{} {
q.count--
q.shrinkIfExcess()
return ret
return *ret
}
// Front returns the element at the front of the queue. This is the element
// that would be returned by PopFront(). This call panics if the queue is
// empty.
func (q *Deque) Front() interface{} {
func (q *Deque) Front() int {
if q.count <= 0 {
panic("deque: Front() called when empty")
}
return q.buf[q.head]
return *q.buf[q.head]
}
// Back returns the element at the back of the queue. This is the element
// that would be returned by PopBack(). This call panics if the queue is
// empty.
func (q *Deque) Back() interface{} {
func (q *Deque) Back() int {
if q.count <= 0 {
panic("deque: Back() called when empty")
}
return q.buf[q.prev(q.tail)]
return *q.buf[q.prev(q.tail)]
}
// At returns the element at index i in the queue without removing the element
@ -155,23 +155,23 @@ func (q *Deque) Back() interface{} {
// case of a fixed-size circular log buffer: A new entry is pushed onto one end
// and when full the oldest is popped from the other end. All the log entries
// in the buffer must be readable without altering the buffer contents.
func (q *Deque) At(i int) interface{} {
func (q *Deque) At(i int) int {
if i < 0 || i >= q.count {
panic("deque: At() called with index out of range")
}
// bitwise modulus
return q.buf[(q.head+i)&(len(q.buf)-1)]
return *q.buf[(q.head+i)&(len(q.buf)-1)]
}
// Set puts the element at index i in the queue. Set shares the same purpose
// than At() but perform the opposite operation. The index i is the same
// index defined by At(). If the index is invalid, the call panics.
func (q *Deque) Set(i int, elem interface{}) {
func (q *Deque) Set(i int, elem int) {
if i < 0 || i >= q.count {
panic("deque: Set() called with index out of range")
}
// bitwise modulus
q.buf[(q.head+i)&(len(q.buf)-1)] = elem
q.buf[(q.head+i)&(len(q.buf)-1)] = &elem
}
// Clear removes all elements from the queue, but retains the current capacity.
@ -270,7 +270,7 @@ func (q *Deque) growIfFull() {
if q.minCap == 0 {
q.minCap = minCapacity
}
q.buf = make([]interface{}, q.minCap)
q.buf = make([]*int, q.minCap)
return
}
q.resize()
@ -287,7 +287,7 @@ func (q *Deque) shrinkIfExcess() {
// used to grow the queue when it is full, and also to shrink it when it is
// only a quarter full.
func (q *Deque) resize() {
newBuf := make([]interface{}, q.count<<1)
newBuf := make([]*int, q.count<<1)
if q.tail > q.head {
copy(newBuf, q.buf[q.head:q.tail])
} else {

View file

@ -1,727 +0,0 @@
package deque
import "testing"
func TestEmpty(t *testing.T) {
var q Deque
if q.Len() != 0 {
t.Error("q.Len() =", q.Len(), "expect 0")
}
}
func TestFrontBack(t *testing.T) {
var q Deque
q.PushBack("foo")
q.PushBack("bar")
q.PushBack("baz")
if q.Front() != "foo" {
t.Error("wrong value at front of queue")
}
if q.Back() != "baz" {
t.Error("wrong value at back of queue")
}
if q.PopFront() != "foo" {
t.Error("wrong value removed from front of queue")
}
if q.Front() != "bar" {
t.Error("wrong value remaining at front of queue")
}
if q.Back() != "baz" {
t.Error("wrong value remaining at back of queue")
}
if q.PopBack() != "baz" {
t.Error("wrong value removed from back of queue")
}
if q.Front() != "bar" {
t.Error("wrong value remaining at front of queue")
}
if q.Back() != "bar" {
t.Error("wrong value remaining at back of queue")
}
}
func TestGrowShrinkBack(t *testing.T) {
var q Deque
size := minCapacity * 2
for i := 0; i < size; i++ {
if q.Len() != i {
t.Error("q.Len() =", q.Len(), "expected", i)
}
q.PushBack(i)
}
bufLen := len(q.buf)
// Remove from back.
for i := size; i > 0; i-- {
if q.Len() != i {
t.Error("q.Len() =", q.Len(), "expected", i)
}
x := q.PopBack()
if x != i-1 {
t.Error("q.PopBack() =", x, "expected", i-1)
}
}
if q.Len() != 0 {
t.Error("q.Len() =", q.Len(), "expected 0")
}
if len(q.buf) == bufLen {
t.Error("queue buffer did not shrink")
}
}
func TestGrowShrinkFront(t *testing.T) {
var q Deque
size := minCapacity * 2
for i := 0; i < size; i++ {
if q.Len() != i {
t.Error("q.Len() =", q.Len(), "expected", i)
}
q.PushBack(i)
}
bufLen := len(q.buf)
// Remove from Front
for i := 0; i < size; i++ {
if q.Len() != size-i {
t.Error("q.Len() =", q.Len(), "expected", minCapacity*2-i)
}
x := q.PopFront()
if x != i {
t.Error("q.PopBack() =", x, "expected", i)
}
}
if q.Len() != 0 {
t.Error("q.Len() =", q.Len(), "expected 0")
}
if len(q.buf) == bufLen {
t.Error("queue buffer did not shrink")
}
}
func TestSimple(t *testing.T) {
var q Deque
for i := 0; i < minCapacity; i++ {
q.PushBack(i)
}
for i := 0; i < minCapacity; i++ {
if q.Front() != i {
t.Error("peek", i, "had value", q.Front())
}
x := q.PopFront()
if x != i {
t.Error("remove", i, "had value", x)
}
}
q.Clear()
for i := 0; i < minCapacity; i++ {
q.PushFront(i)
}
for i := minCapacity - 1; i >= 0; i-- {
x := q.PopFront()
if x != i {
t.Error("remove", i, "had value", x)
}
}
}
func TestBufferWrap(t *testing.T) {
var q Deque
for i := 0; i < minCapacity; i++ {
q.PushBack(i)
}
for i := 0; i < 3; i++ {
q.PopFront()
q.PushBack(minCapacity + i)
}
for i := 0; i < minCapacity; i++ {
if q.Front().(int) != i+3 {
t.Error("peek", i, "had value", q.Front())
}
q.PopFront()
}
}
func TestBufferWrapReverse(t *testing.T) {
var q Deque
for i := 0; i < minCapacity; i++ {
q.PushFront(i)
}
for i := 0; i < 3; i++ {
q.PopBack()
q.PushFront(minCapacity + i)
}
for i := 0; i < minCapacity; i++ {
if q.Back().(int) != i+3 {
t.Error("peek", i, "had value", q.Front())
}
q.PopBack()
}
}
func TestLen(t *testing.T) {
var q Deque
if q.Len() != 0 {
t.Error("empty queue length not 0")
}
for i := 0; i < 1000; i++ {
q.PushBack(i)
if q.Len() != i+1 {
t.Error("adding: queue with", i, "elements has length", q.Len())
}
}
for i := 0; i < 1000; i++ {
q.PopFront()
if q.Len() != 1000-i-1 {
t.Error("removing: queue with", 1000-i-i, "elements has length", q.Len())
}
}
}
func TestBack(t *testing.T) {
var q Deque
for i := 0; i < minCapacity+5; i++ {
q.PushBack(i)
if q.Back() != i {
t.Errorf("Back returned wrong value")
}
}
}
func TestNew(t *testing.T) {
minCap := 64
q := New(0, minCap)
if q.Cap() != 0 {
t.Fatal("should not have allowcated mem yet")
}
q.PushBack("foo")
q.PopFront()
if q.Len() != 0 {
t.Fatal("Len() should return 0")
}
if q.Cap() != minCap {
t.Fatalf("worng capactiy expected %d, got %d", minCap, q.Cap())
}
curCap := 128
q = New(curCap, minCap)
if q.Cap() != curCap {
t.Fatalf("Cap() should return %d, got %d", curCap, q.Cap())
}
if q.Len() != 0 {
t.Fatalf("Len() should return 0")
}
q.PushBack("foo")
if q.Cap() != curCap {
t.Fatalf("Cap() should return %d, got %d", curCap, q.Cap())
}
}
func checkRotate(t *testing.T, size int) {
var q Deque
for i := 0; i < size; i++ {
q.PushBack(i)
}
for i := 0; i < q.Len(); i++ {
x := i
for n := 0; n < q.Len(); n++ {
if q.At(n) != x {
t.Fatalf("a[%d] != %d after rotate and copy", n, x)
}
x++
if x == q.Len() {
x = 0
}
}
q.Rotate(1)
if q.Back().(int) != i {
t.Fatal("wrong value during rotation")
}
}
for i := q.Len() - 1; i >= 0; i-- {
q.Rotate(-1)
if q.Front().(int) != i {
t.Fatal("wrong value during reverse rotation")
}
}
}
func TestRotate(t *testing.T) {
checkRotate(t, 10)
checkRotate(t, minCapacity)
checkRotate(t, minCapacity+minCapacity/2)
var q Deque
for i := 0; i < 10; i++ {
q.PushBack(i)
}
q.Rotate(11)
if q.Front() != 1 {
t.Error("rotating 11 places should have been same as one")
}
q.Rotate(-21)
if q.Front() != 0 {
t.Error("rotating -21 places should have been same as one -1")
}
q.Rotate(q.Len())
if q.Front() != 0 {
t.Error("should not have rotated")
}
q.Clear()
q.PushBack(0)
q.Rotate(13)
if q.Front() != 0 {
t.Error("should not have rotated")
}
}
func TestAt(t *testing.T) {
var q Deque
for i := 0; i < 1000; i++ {
q.PushBack(i)
}
// Front to back.
for j := 0; j < q.Len(); j++ {
if q.At(j).(int) != j {
t.Errorf("index %d doesn't contain %d", j, j)
}
}
// Back to front
for j := 1; j <= q.Len(); j++ {
if q.At(q.Len()-j).(int) != q.Len()-j {
t.Errorf("index %d doesn't contain %d", q.Len()-j, q.Len()-j)
}
}
}
func TestSet(t *testing.T) {
var q Deque
for i := 0; i < 1000; i++ {
q.PushBack(i)
q.Set(i, i+50)
}
// Front to back.
for j := 0; j < q.Len(); j++ {
if q.At(j).(int) != j+50 {
t.Errorf("index %d doesn't contain %d", j, j+50)
}
}
}
func TestClear(t *testing.T) {
var q Deque
for i := 0; i < 100; i++ {
q.PushBack(i)
}
if q.Len() != 100 {
t.Error("push: queue with 100 elements has length", q.Len())
}
cap := len(q.buf)
q.Clear()
if q.Len() != 0 {
t.Error("empty queue length not 0 after clear")
}
if len(q.buf) != cap {
t.Error("queue capacity changed after clear")
}
// Check that there are no remaining references after Clear()
for i := 0; i < len(q.buf); i++ {
if q.buf[i] != nil {
t.Error("queue has non-nil deleted elements after Clear()")
break
}
}
}
func TestInsert(t *testing.T) {
q := new(Deque)
for _, x := range "ABCDEFG" {
q.PushBack(x)
}
insert(q, 4, 'x') // ABCDxEFG
if q.At(4) != 'x' {
t.Error("expected x at position 4")
}
insert(q, 2, 'y') // AByCDxEFG
if q.At(2) != 'y' {
t.Error("expected y at position 2")
}
if q.At(5) != 'x' {
t.Error("expected x at position 5")
}
insert(q, 0, 'b') // bAByCDxEFG
if q.Front() != 'b' {
t.Error("expected b inserted at front")
}
insert(q, q.Len(), 'e') // bAByCDxEFGe
for i, x := range "bAByCDxEFGe" {
if q.PopFront() != x {
t.Error("expected", x, "at position", i)
}
}
}
func TestRemove(t *testing.T) {
q := new(Deque)
for _, x := range "ABCDEFG" {
q.PushBack(x)
}
if remove(q, 4) != 'E' { // ABCDFG
t.Error("expected E from position 4")
}
if remove(q, 2) != 'C' { // ABDFG
t.Error("expected C at position 2")
}
if q.Back() != 'G' {
t.Error("expected G at back")
}
if remove(q, 0) != 'A' { // BDFG
t.Error("expected to remove A from front")
}
if q.Front() != 'B' {
t.Error("expected G at back")
}
if remove(q, q.Len()-1) != 'G' { // BDF
t.Error("expected to remove G from back")
}
if q.Back() != 'F' {
t.Error("expected F at back")
}
if q.Len() != 3 {
t.Error("wrong length")
}
}
func TestFrontBackOutOfRangePanics(t *testing.T) {
const msg = "should panic when peeking empty queue"
var q Deque
assertPanics(t, msg, func() {
q.Front()
})
assertPanics(t, msg, func() {
q.Back()
})
q.PushBack(1)
q.PopFront()
assertPanics(t, msg, func() {
q.Front()
})
assertPanics(t, msg, func() {
q.Back()
})
}
func TestPopFrontOutOfRangePanics(t *testing.T) {
var q Deque
assertPanics(t, "should panic when removing empty queue", func() {
q.PopFront()
})
q.PushBack(1)
q.PopFront()
assertPanics(t, "should panic when removing emptied queue", func() {
q.PopFront()
})
}
func TestPopBackOutOfRangePanics(t *testing.T) {
var q Deque
assertPanics(t, "should panic when removing empty queue", func() {
q.PopBack()
})
q.PushBack(1)
q.PopBack()
assertPanics(t, "should panic when removing emptied queue", func() {
q.PopBack()
})
}
func TestAtOutOfRangePanics(t *testing.T) {
var q Deque
q.PushBack(1)
q.PushBack(2)
q.PushBack(3)
assertPanics(t, "should panic when negative index", func() {
q.At(-4)
})
assertPanics(t, "should panic when index greater than length", func() {
q.At(4)
})
}
func TestSetOutOfRangePanics(t *testing.T) {
var q Deque
q.PushBack(1)
q.PushBack(2)
q.PushBack(3)
assertPanics(t, "should panic when negative index", func() {
q.Set(-4, 1)
})
assertPanics(t, "should panic when index greater than length", func() {
q.Set(4, 1)
})
}
func TestInsertOutOfRangePanics(t *testing.T) {
q := new(Deque)
assertPanics(t, "should panic when inserting out of range", func() {
insert(q, 1, "X")
})
q.PushBack("A")
assertPanics(t, "should panic when inserting at negative index", func() {
insert(q, -1, "Y")
})
assertPanics(t, "should panic when inserting out of range", func() {
insert(q, 2, "B")
})
}
func TestRemoveOutOfRangePanics(t *testing.T) {
q := new(Deque)
assertPanics(t, "should panic when removing from empty queue", func() {
remove(q, 0)
})
q.PushBack("A")
assertPanics(t, "should panic when removing at negative index", func() {
remove(q, -1)
})
assertPanics(t, "should panic when removing out of range", func() {
remove(q, 1)
})
}
func TestSetMinCapacity(t *testing.T) {
var q Deque
exp := uint(8)
q.SetMinCapacity(exp)
q.PushBack("A")
if q.minCap != 1<<exp {
t.Fatal("wrong minimum capacity")
}
if len(q.buf) != 1<<exp {
t.Fatal("wrong buffer size")
}
q.PopBack()
if q.minCap != 1<<exp {
t.Fatal("wrong minimum capacity")
}
if len(q.buf) != 1<<exp {
t.Fatal("wrong buffer size")
}
q.SetMinCapacity(0)
if q.minCap != minCapacity {
t.Fatal("wrong minimum capacity")
}
}
func assertPanics(t *testing.T, name string, f func()) {
defer func() {
if r := recover(); r == nil {
t.Errorf("%s: didn't panic as expected", name)
}
}()
f()
}
func BenchmarkPushFront(b *testing.B) {
var q Deque
for i := 0; i < b.N; i++ {
q.PushFront(i)
}
}
func BenchmarkPushBack(b *testing.B) {
var q Deque
for i := 0; i < b.N; i++ {
q.PushBack(i)
}
}
func BenchmarkSerial(b *testing.B) {
var q Deque
for i := 0; i < b.N; i++ {
q.PushBack(i)
}
for i := 0; i < b.N; i++ {
q.PopFront()
}
}
func BenchmarkSerialReverse(b *testing.B) {
var q Deque
for i := 0; i < b.N; i++ {
q.PushFront(i)
}
for i := 0; i < b.N; i++ {
q.PopBack()
}
}
func BenchmarkRotate(b *testing.B) {
q := new(Deque)
for i := 0; i < b.N; i++ {
q.PushBack(i)
}
b.ResetTimer()
// N complete rotations on length N - 1.
for i := 0; i < b.N; i++ {
q.Rotate(b.N - 1)
}
}
func BenchmarkInsert(b *testing.B) {
q := new(Deque)
for i := 0; i < b.N; i++ {
q.PushBack(i)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
insert(q, q.Len()/2, -i)
}
}
func BenchmarkRemove(b *testing.B) {
q := new(Deque)
for i := 0; i < b.N; i++ {
q.PushBack(i)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
remove(q, q.Len()/2)
}
}
func BenchmarkYoyo(b *testing.B) {
var q Deque
for i := 0; i < b.N; i++ {
for j := 0; j < 65536; j++ {
q.PushBack(j)
}
for j := 0; j < 65536; j++ {
q.PopFront()
}
}
}
func BenchmarkYoyoFixed(b *testing.B) {
var q Deque
q.SetMinCapacity(16)
for i := 0; i < b.N; i++ {
for j := 0; j < 65536; j++ {
q.PushBack(j)
}
for j := 0; j < 65536; j++ {
q.PopFront()
}
}
}
// insert is used to insert an element into the middle of the queue, before the
// element at the specified index. insert(0,e) is the same as PushFront(e) and
// insert(Len(),e) is the same as PushBack(e). Complexity is constant plus
// linear in the lesser of the distances between i and either of the ends of
// the queue. Accepts only non-negative index values, and panics if index is
// out of range.
func insert(q *Deque, i int, elem interface{}) {
if i < 0 || i > q.Len() {
panic("deque: Insert() called with index out of range")
}
if i == 0 {
q.PushFront(elem)
return
}
if i == q.Len() {
q.PushBack(elem)
return
}
if i <= q.Len()/2 {
q.Rotate(i)
q.PushFront(elem)
q.Rotate(-i)
} else {
rots := q.Len() - i
q.Rotate(-rots)
q.PushBack(elem)
q.Rotate(rots)
}
}
// remove removes and returns an element from the middle of the queue, at the
// specified index. remove(0) is the same as PopFront() and remove(Len()-1) is
// the same as PopBack(). Complexity is constant plus linear in the lesser of
// the distances between i and either of the ends of the queue. Accepts only
// non-negative index values, and panics if index is out of range.
func remove(q *Deque, i int) interface{} {
if i < 0 || i >= q.Len() {
panic("deque: Remove() called with index out of range")
}
if i == 0 {
return q.PopFront()
}
if i == q.Len()-1 {
return q.PopBack()
}
if i <= q.Len()/2 {
q.Rotate(i)
elem := q.PopFront()
q.Rotate(-i)
return elem
}
rots := q.Len() - 1 - i
q.Rotate(-rots)
elem := q.PopBack()
q.Rotate(rots)
return elem
}

4
go.mod
View file

@ -1,3 +1,3 @@
module github.com/gammazero/deque
module git.gammaspectra.live/S.O.N.G/deque-int
go 1.15
go 1.17