go-randomx/vm.go

353 lines
11 KiB
Go

/*
Copyright (c) 2019 DERO Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package randomx
import (
"git.gammaspectra.live/P2Pool/go-randomx/fpu"
"math"
"runtime"
)
import "math/bits"
import "encoding/binary"
import "golang.org/x/crypto/blake2b"
type REG struct {
Hi uint64
Lo uint64
}
type VM struct {
State_start [64]byte
buffer [RANDOMX_PROGRAM_SIZE*8 + 16*8]byte // first 128 bytes are entropy below rest are program bytes
Prog []byte
ScratchPad []byte
ByteCode [RANDOMX_PROGRAM_SIZE]InstructionByteCode
// program configuration see program.hpp
entropy [16]uint64
reg REGISTER_FILE // the register file
mem MemoryRegisters
config Config // configuration
datasetOffset uint64
Cache *Randomx_Cache // randomx cache
}
func MaskRegisterExponentMantissa(f float64, mode uint64) float64 {
return math.Float64frombits((math.Float64bits(f) & dynamicMantissaMask) | mode)
}
func (cache *Randomx_Cache) VM_Initialize() *VM {
return &VM{Cache: cache} //// setup the cache
}
type Config struct {
eMask [2]uint64
readReg0, readReg1, readReg2, readReg3 uint64
}
type REGISTER_FILE struct {
r [8]uint64
f [4][2]float64
e [4][2]float64
a [4][2]float64
}
type MemoryRegisters struct {
mx, ma uint64 //addr_t mx, ma;
mempry uint64 // uint8_t* memory = nullptr;
}
const LOW = 0
const HIGH = 1
// calculate hash based on input
func (vm *VM) Run(input_hash []byte) {
var mix_block [8]uint64
//fmt.Printf("%x \n", input_hash)
fillAes4Rx4(input_hash[:], vm.buffer[:])
for i := range vm.entropy {
vm.entropy[i] = binary.LittleEndian.Uint64(vm.buffer[i*8:])
}
vm.Prog = vm.buffer[len(vm.entropy)*8:]
for i := range vm.reg.r {
vm.reg.r[i] = 0
}
// do more initialization before we run
vm.reg.a[0][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[0]))
vm.reg.a[0][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[1]))
vm.reg.a[1][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[2]))
vm.reg.a[1][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[3]))
vm.reg.a[2][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[4]))
vm.reg.a[2][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[5]))
vm.reg.a[3][LOW] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[6]))
vm.reg.a[3][HIGH] = math.Float64frombits(getSmallPositiveFloatBits(vm.entropy[7]))
vm.mem.ma = vm.entropy[8] & CacheLineAlignMask
vm.mem.mx = vm.entropy[10]
addressRegisters := vm.entropy[12]
vm.config.readReg0 = 0 + (addressRegisters & 1)
addressRegisters >>= 1
vm.config.readReg1 = 2 + (addressRegisters & 1)
addressRegisters >>= 1
vm.config.readReg2 = 4 + (addressRegisters & 1)
addressRegisters >>= 1
vm.config.readReg3 = 6 + (addressRegisters & 1)
vm.datasetOffset = (vm.entropy[13] % (DATASETEXTRAITEMS + 1)) * CacheLineSize
vm.config.eMask[0] = getFloatMask(vm.entropy[14])
vm.config.eMask[1] = getFloatMask(vm.entropy[15])
//fmt.Printf("prog %x entropy 0 %x %f \n", vm.buffer[:32], vm.entropy[0], vm.reg.a[0][HIGH])
vm.Compile_TO_Bytecode()
spAddr0 := vm.mem.mx
spAddr1 := vm.mem.ma
for ic := 0; ic < RANDOMX_PROGRAM_ITERATIONS; ic++ {
spMix := vm.reg.r[vm.config.readReg0] ^ vm.reg.r[vm.config.readReg1]
spAddr0 ^= spMix
spAddr0 &= ScratchpadL3Mask64
spAddr1 ^= spMix >> 32
spAddr1 &= ScratchpadL3Mask64
//fmt.Printf("spAddr0 %x %x\n", spAddr0,spAddr1)
for i := uint64(0); i < REGISTERSCOUNT; i++ {
vm.reg.r[i] ^= vm.Load64(spAddr0 + 8*i)
//fmt.Printf("r[%d] %x \n", i,vm.reg.r[i]);
}
for i := uint64(0); i < REGISTERCOUNTFLT; i++ {
vm.reg.f[i][LOW] = vm.Load32F(spAddr1 + 8*i)
vm.reg.f[i][HIGH] = vm.Load32F(spAddr1 + 8*i + 4)
//fmt.Printf("lo %f %f\n", vm.reg.f[i][LOW] , vm.reg.f[i][HIGH] )
}
for i := uint64(0); i < REGISTERCOUNTFLT; i++ {
vm.reg.e[i][LOW] = vm.Load32F(spAddr1 + 8*(i+REGISTERCOUNTFLT))
vm.reg.e[i][HIGH] = vm.Load32F(spAddr1 + 8*(i+REGISTERCOUNTFLT) + 4)
// fmt.Printf("OR %x %x\n", (math.Float64bits(vm.reg.e[i][LOW]) & dynamicMantissaMask) | vm.config.eMask[LOW] , (math.Float64bits(vm.reg.e[i][HIGH]) & dynamicMantissaMask)| vm.config.eMask[HIGH] )
vm.reg.e[i][LOW] = MaskRegisterExponentMantissa(vm.reg.e[i][LOW], vm.config.eMask[LOW])
vm.reg.e[i][HIGH] = MaskRegisterExponentMantissa(vm.reg.e[i][HIGH], vm.config.eMask[HIGH])
//fmt.Printf("lo e %f %f\n", vm.reg.e[i][LOW] , vm.reg.e[i][HIGH] )
}
//for i := uint64(0); i < REGISTERCOUNTFLT; i++{
//fmt.Printf("a low %f high %f\n", vm.reg.a[i][LOW] , vm.reg.a[i][HIGH] )
//}
vm.InterpretByteCode()
vm.mem.mx ^= vm.reg.r[vm.config.readReg2] ^ vm.reg.r[vm.config.readReg3]
vm.mem.mx &= CacheLineAlignMask
//fmt.Printf("mx %x\n",vm.mem.mx )
// execute diffuser superscalar program to get dataset 64 bytes
{
itemnumber := (vm.datasetOffset + vm.mem.ma) / CacheLineSize
//fmt.Printf("qitem number %x\n", itemnumber)
vm.Cache.InitDatasetItem(mix_block[:], itemnumber)
for i := range vm.reg.r {
vm.reg.r[i] ^= mix_block[i]
}
}
vm.mem.mx, vm.mem.ma = vm.mem.ma, vm.mem.mx // swap the elements
for i := uint64(0); i < REGISTERSCOUNT; i++ {
binary.BigEndian.PutUint64(vm.ScratchPad[spAddr1+(8*i):], bits.RotateLeft64(vm.reg.r[i], 32))
//fmt.Printf("reg r[%d] %x\n", i,vm.reg.r[i])
}
for i := uint64(0); i < REGISTERCOUNTFLT; i++ {
vm.reg.f[i][LOW] = math.Float64frombits(math.Float64bits(vm.reg.f[i][LOW]) ^ math.Float64bits(vm.reg.e[i][LOW]))
vm.reg.f[i][HIGH] = math.Float64frombits(math.Float64bits(vm.reg.f[i][HIGH]) ^ math.Float64bits(vm.reg.e[i][HIGH]))
binary.BigEndian.PutUint64(vm.ScratchPad[spAddr0+(16*i):], bits.RotateLeft64(math.Float64bits(vm.reg.f[i][LOW]), 32))
binary.BigEndian.PutUint64(vm.ScratchPad[spAddr0+(16*i)+8:], bits.RotateLeft64(math.Float64bits(vm.reg.f[i][HIGH]), 32))
// fmt.Printf("%d %+v\n", i, vm.reg.f[i])
}
spAddr0 = 0
spAddr1 = 0
}
}
func (vm *VM) CalculateHash(input []byte, output []byte) {
var buf [8]byte
// Lock thread due to rounding mode flags
runtime.LockOSThread()
defer runtime.UnlockOSThread()
//restore rounding mode to golang expected one
defer fpu.SetRoundingMode(fpu.RoundingModeToNearest)
// reset rounding mode if new hash being calculated
fpu.SetRoundingMode(fpu.RoundingModeToNearest)
input_hash := blake2b.Sum512(input)
vm.ScratchPad = make([]byte, ScratchpadSize, ScratchpadSize) // calculate and fill scratchpad
fillAes1Rx4(input_hash[:], vm.ScratchPad)
hash512, _ := blake2b.New512(nil)
temp_hash := input_hash[:]
for chain := 0; chain < RANDOMX_PROGRAM_COUNT-1; chain++ {
vm.Run(temp_hash)
hash512.Reset()
for i := range vm.reg.r {
binary.LittleEndian.PutUint64(buf[:], vm.reg.r[i])
hash512.Write(buf[:])
}
for i := range vm.reg.f {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][LOW]))
hash512.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][HIGH]))
hash512.Write(buf[:])
}
for i := range vm.reg.e {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][LOW]))
hash512.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][HIGH]))
hash512.Write(buf[:])
}
for i := range vm.reg.a {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.a[i][LOW]))
hash512.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.a[i][HIGH]))
hash512.Write(buf[:])
}
temp_hash = hash512.Sum(nil)
//fmt.Printf("%d temphash %x\n", chain, temp_hash)
}
// final loop executes here
vm.Run(temp_hash)
// now hash the scratch pad and place into register a
hashAes1Rx4(vm.ScratchPad, temp_hash)
hash256, _ := blake2b.New256(nil)
hash256.Reset()
for i := range vm.reg.r {
binary.LittleEndian.PutUint64(buf[:], vm.reg.r[i])
hash256.Write(buf[:])
}
for i := range vm.reg.f {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][LOW]))
hash256.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.f[i][HIGH]))
hash256.Write(buf[:])
}
for i := range vm.reg.e {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][LOW]))
hash256.Write(buf[:])
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(vm.reg.e[i][HIGH]))
hash256.Write(buf[:])
}
// copy temp_hash as it first copied to register and then hashed
hash256.Write(temp_hash)
final_hash := hash256.Sum(nil)
copy(output, final_hash)
//fmt.Printf("final %x\n", final_hash)
}
/*
const mantissaSize = 52;
const exponentSize = 11;
const mantissaMask = ( (uint64(1)) << mantissaSize) - 1;
const exponentMask = (uint64(1) << exponentSize) - 1;
const exponentBias = 1023;
const dynamicExponentBits = 4;
const staticExponentBits = 4;
const constExponentBits uint64= 0x300;
const dynamicMantissaMask = ( uint64(1) << (mantissaSize + dynamicExponentBits)) - 1;
*/
const mask22bit = (uint64(1) << 22) - 1
func getSmallPositiveFloatBits(entropy uint64) uint64 {
exponent := entropy >> 59 //0..31
mantissa := entropy & mantissaMask
exponent += exponentBias
exponent &= exponentMask
exponent = exponent << mantissaSize
return exponent | mantissa
}
func getStaticExponent(entropy uint64) uint64 {
exponent := constExponentBits
exponent |= (entropy >> (64 - staticExponentBits)) << dynamicExponentBits
exponent <<= mantissaSize
return exponent
}
func getFloatMask(entropy uint64) uint64 {
return (entropy & mask22bit) | getStaticExponent(entropy)
}